设球体x^2 y^2 z^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 03:02:29
设球体x^2 y^2 z^2
设X,Y,Z为正实数,求(1+2X)*(3Y+4X)*(4y+3z)*(2z+1)/(x*y*z)的最小值

思路还是挺多的,比如可以先固定y,z对x求最小值消掉x,再固定y对z求最小值消掉z,最后求关于y的一元函数最小值一个比较技巧性的方法是加一个变量将原式变成(t+2x)(3y+4x)(4y+3z)(2z

设一个密度均匀的半球体占有空间区域 x^2+y^2+z^2≦R^2 试求该球体质心坐标

立体关于x,y轴对称,因此质心的x,y坐标为0.只需要计算z的坐标.先计算体积(用球坐标)x=rsinucosvy=rsinusinvz=rcosu这里02pi)rcosu*r^2sinudvdudr

设X+Y+Z=0求X^3+X^2Z-XYZ+Y^2Z+Y^3的值

因为:X+Y+Z=0得:Z+Y=-X------(1)X+Y=-Z------------(2)Z+Y=-X------------(3)X^3+X^2Z-XYZ+Y^2Z+Y^3=X^3+XZ(X+

设z=z(x,y)由方程x/z=ln(y/2)所确定的隐函数 求∂z/∂y,∂z/&

z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)

设z=z(x,y)是方程x^2+z^2=ysin(z/x)确定的隐函数,求Z对x,y的偏导数

1、对X求导(导数符号无,用“£”代替)两边对x求导有:2x2z£z/£x=-ycos(z/x)/x^2*£z/£x:化简得:£z/£x=-2x/[2zycos(z/x)/x^2]:2、对y求导两边求

设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值

由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+

设 x+2y+z-2根号下xyz=0 求∂z/∂x ,∂z/∂y

∂z/∂x把y看成常数所以1+0+∂z/∂x-2/[2√(xyz)]*y*(1*z+x*∂z/∂x)=01+∂z/&

16.设x+y+z=3y=2z ,求x/(x+y+z)的值5.7

z=3y/2把:z=3y/2代入x+y+z=3y得:x+y+3y/2=3y整理后得:x=y/2所以:x/(x+y+z)=(y/2)/(y/2+y+3y/2)=1/6不好意思上次算的时候没注意少了y除2

设函数f可微,z=f(ye^x,x/(y^2)) 求z/x,z/y

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

设函数z=z(x,y)由方程e^(-xy)-2z+e^z=0确定,求z/x,z/y

两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,

计算球体x^2+y^2+z^2

球体体积3/4*pi*R^3三重积分用球坐标也可以,被积函数是1三重积分柱坐标被积函数是2*(根号下R^2-x^2-y^2)二重积分也可以,被积函数是2*(根号下R^2-x^2-y^2)..

设z=ln(x^2+y),求

∂z/∂x=(1/(x²+y))(2x)=2x/(x²+y)∂²f/∂x∂y=∂[∂z

设Ω={(x,y,z)|x^2+y^2+z^2

建议将球体移到原点位置,这样好做些.用柱面坐标也可以,但基本过程复杂不太推荐,不过,随你喜欢~第一个积分的化简步骤直接跳过了,你不明白的话可以追问,

设x+y^2+z=ln根号(x+y^2+z),求аz/аx (x+y^2+z)在根号下,

两边取e的指数:e^(x+y²+z)=(x+y²+z)/2对x求导:[e^(x+y²+z)]*(1+ðz/ðx)=(1+ðz/ðx

设x+y^2+z=ln(x+y^2+z)^1/2,求dz/dx

应该是∂z/∂x吧!令u=x+y^2+z=>du/dx=1+dz/dxu=lnu^(1/2)=1/2*lnudu/dx=1/2*1/u*du/dx=>du/dx=u/(1/2+

设由方程x+2y+z=e^(x-y-z)确定的隐函数为z=z(x,y),求d^2z/dx^2

x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).

设Z=X+Y,其中X,Y满足X+2Y>=0,X-Y

(线性规划)由条件当X=Y=3时有最大值Z=6即得K=3再由X+2Y>=0很容易求得Z最小值-3

设x、y、z为整数,证明:x^4*(y-z)+y^4*(z-x)+z^4*(x-y)/(y+z)^2+(z+x)^2+(

x^4(y-z)+y^4(z-x)+z^4(x-y)=xy(x^3-y^3)+yz(y^3-z^3)+zx(z^3-x^3)=xy(x^3-y^3)+yz(y^3-z^3)-zx[(x^3-y^3)+