设样本为来自泊松分布的一个样本,证明样本均值与样本方差都是无偏估计
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:05:40
观察直方图易得数据落在[10,12)的频率=(0.02+0.05+0.15+0.19)×2=0.82;数据落在[10,12)外的频率=1-0.82=0.18;∴样本数落在[10,12)内的频数为200
X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.
X(1)f1(x)=n*(F(x))^(n-1)*f(x)F1(x)=(F(x))^nX(n)fn(x)=n*(1-F(x))^(n-1)*f(x)Fn(x)=(1-F(x))^n其中f(x)F(x)
服从~N(u,σ^2/n)正态分布
由Xi~N(3,4)得Xi-3~N(0,4)得(Xi-3)/4~N(0,4/(4^2))所以(Xi-3)/4~N(0,1/4)
Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服
样本均值的方差等于总体方差除样本数20.总体方差=参数10
求证什么?看不懂你的意思 你把题目打清楚点,我看看 就算这个统计量的方差是否是λ这里有
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正
样本均值的期望等于总体期望,此题中为np样本方差的期望等于总体方差,此题为np(1-p)所以t的期望等于np-np(1-p)np(1-p)
P(X=1)=pP(X=0)=1-p所以X的密度函数是P(X=a)=p^a*(1-p)^(1-a)a=0或1p未知,p∈[0,1]样本为X1……XN所以似然函数是L(x1,x2……xn;p)=(p^x
本题考查样本的频率运算.一个容量为20的样本数据,据表知样本分布在(20,50]的频数3+4+5=12,故其频率为1220=0.6.故选C
样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
上面这个网址有关于这个结论的详细证明,如有不懂可追问.
亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!
我来解!首先你要搞清楚s^2是个什么东西!第二你要搞清楚方差的概念!s^2就是方差!定义就是2阶中心距!2阶中心距=E(x-E(x)^2)=∑xE(x-E(x)^2)那么也就等与D(x)换句话说就是求
1.由伽方分布的性质有:\x0dY=X1+X2+...+Xn服从自由度为nm的伽方分布,记其密度为fY(t).\x0d2.样本均值Z=Y/n,Z的分布函数记为FZ(z)=P{Z<=z}=P{Y&
均值=(X1+X2+.+Xn)/n方差=[(X1-均值)^2+(X2-均值)^2+.+(Xn-均值)^2]/n