设某厂商的生产函数为Q=L^1 2K^1 2,且L的价格W=1.K的价格R=3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:00:09
设某厂商的生产函数为Q=L^1 2K^1 2,且L的价格W=1.K的价格R=3
已知某厂商的生产函数为Q=L^2*K,又知劳动L的价格w=2,资本K的价格r=3.试问:若市场对该产品的需求量为9000

lingxiaoqin123,你好:据推测,你是要找,需要量一定的情况下,为了获取最大利润,要用多少资本或者劳动吧?首先根据等边际原理.MPL/w=MPK/r推出K=L/3,代入,得L=30.K=10

西方经济学几道计算题1、已知某厂商的生产函数Q=(L,K)=2KL+15L2-L3,假设厂商目前处于短期生产,且K=36

一.1.当K=36时,我们把其带入.可得Q=72L+15L^2-L^3=TPL,可得APL=72+15L-L^2MPL为TPL求导,为72+30L-3L^2=MPL2,根据函数的单调性,对TPL求导,

假定某厂商的边际成本函数MC=3Q^2-30Q+100,且生产10单位产量时的总成本为1000.

解:MC=3Q2-30Q+100所以TC(Q)=Q3-15Q2+100Q+M当Q=10时,TC=1000=500固定成本值:500TC(Q)=Q3-15Q2+100Q+500TVC(Q)=Q3-15Q

已知某厂商产品生产的总成本函数为TC=Q3-4Q2+100Q+70,求:总可变成本函数TVC、平均成本函数A C

TVC=TC-70.因为总成本=总可变成本+不变成本,显然本式中,永远不变的就是70,那么它就是固定成本,所以TVC=Q3-4Q2+100QAVC=TVC/Q我想你说的应该是平均可变成本吧,那个式子是

假设某厂商的短期生产函数为Q=35L+8L^2-L^3.求:(1)该企业的平均产量函数和边际产量函数.

1)AP(L)=Q/L=35+8L-L^2MP(L)=35+16L-3L^22)L=6时,代入MP(L)MP(L)=35+96-108>0所以,合理~~

已知某厂商的生产函数为Q=L^(3/8)K^(5/8),又设Pl=3元,Pk=5元,求产量Q=10时的最低成本和使用的L

L是劳动力K表示资本这是经济学的吧Q表示产量公式表示劳动力和资本与产量的对应关系MPI和MPK就是导数的意思分别求导就是经济学表示边际

1.已知某厂商的生产函数为:Q=L3/8K5/8,又设PL=3,PK=5.

成本是C=PL*L+PK*K,MPL=3/8*L(-5/8)*K(5/8),MPK=5/8*L(3/8)*K(-3/8)MPL/MPK=3/5*K/L=PL/PK=3/5,所以K=L(1)因为Q=10

厂商的生产函数为Q=L^2/3K^1/3,生产要素L和K的价格分别为W=2和r=1,求:

1.生产函数Q=L^2/3K^1/3所以MPL=2/3L^(-1/3)K^1/3MPK=L^2/3*1/3K^(-2/3)又因为MPL/W=MPK/R所以K=L又由成本方程得:C=KR+LW,又C=2

已知某厂商的生产函数为:Q=L3/8K5/8,又设PL=3,PK=5.求总成本为160时,厂商均衡的Q、K、L的值

这个是道格拉斯函数,根据公式(老师应该证明了吧):L=(P/P+P)*I=(3/8)*160=60,K=(P/P+P)*I=100,然后代入算出Q

微观经济学:已知某厂商的生产函数为Q=0.5L^(1/3)K^(2/3),当资本投入量时资本的价格为500;劳动的价格为

1.利润最大化pai=pq-pl*l-pk*k=p*0.5L^(1/3)K^(2/3)-5l-500k(p为产品价格),利润最大化求一阶导数,pail'=0,paik'=0,两式移项后相除得到:L=5

已知某厂商的生产函数:Q=-L^2+24L^2+240L, 其中Q为日产量,L为日劳动小时数

你是不是打错了第一个是L的3次方吧最佳雇佣量应该是12AP=MP时取到最佳值详细情况你可以去看西方经济学(宏观)教材里面讲解的很清楚再问:题目写错了应为:已知某厂商的生产函数:Q=-L^3+24L^2

1,已知某厂商的生产函数为Q=L3/8K5/8,又设Pl=3元,Pk=5元.求产量Q=10时的最低成本支出和使用的L,K

1,由给定产量成本最小的一阶条件MQL/MQK=PL/PK可以得到L=K=102,由消费函数可得简单乘数为1/(1-0.9)=10,投资增加50,收入增加50*10=500AE=C+I+G=200+0

已知某厂商的生产函数为Q=0.5*L的三分之一次方*K的二分之三次方 当资本投入量K=50时资本的总价格为500,劳动的

这是一个典型的短期成本论问题.(1)因为Q=0.5L^(1/3)K^(2/3)K不变恒为50带入上式即可得L和Q的关系即Q=0.5L^(1/3)50^(2/3)(2)又有成本函数C=wL+rK,其中w

已知某厂商的生产函数为Q=0.5*L的三分之一次方*K的二分之三次方,当资本投入量K=50时资本的总价格为500,劳动的

这是一个典型的短期成本论问题.(1)因为Q=0.5L^(1/3)K^(2/3)K不变恒为50带入上式即可得L和Q的关系即Q=0.5L^(1/3)50^(2/3)(2)又有成本函数C=wL+rK,其中w

已知某厂商的生产函数:Q=-L^3+24L^2+240L

当AP=MP的时候表示边际产量和平均产量是相同的 而当MP=0的时候则表示在增加L的投入产量也不会有增加 你画图 再解上面两个方程 就可以知道合理区间是12-2

西方经济学计算题假定某厂商只有一种可变要素劳动L,产出一种产品Q,固定成本为既定,短期生产函数Q= -0.1L3+6L2

固定成本既定,那就不管了.利润=销售额-成本=单价*数量-人均工资*雇佣人数=30*Q-360*L=30*(-0.1L3+6L2+12L)-360*L=-3L3+180L2然后求一阶倒数=9L2-36

经济学问题;如果某厂商的生产函数为Q=F(K,L)=5K^1/2*L^1/2,P(k)=4,P(L)=9时,求:

(1)5K^1/2*L^1/2=100(2.5K^(-1/2)*L^1/2)/4=(2.5K^1/2*L^(-1/2))/4解方程吧(2)4K+9L=50(2.5K^(-1/2)*L^1/2)/4=(

设某厂商的生产函数为Q=L^1/2K^1/2,且L的价格W=1,K的价格r=3.

1题如图,我算出来LAC和LMC都是常数,自己不肯定,2题我也不会