设是平面在第一卦限的部分 则6x+3y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:16:33
这个图形就是在x,y,z轴上分别取a,b,c长度的线段,然后组成一个四面体.S(总)=1/2(ab+bc+ca)+S(斜面三角形)S(斜面三角形)可以用海伦公式求的
利用极坐标变换:x=rcosay=rsina其中,0≤r≤1,0≤a≤π/4,记为D'因此,∫∫(D)(y/x)^2dxdy=∫∫(D')sina/(rcos^2a)*rdadr=∫(0,1)dr*∫
是求面积么?1.x≠62.当X6时,S△PAO=-(5/2)y=(2/5)x-12/5
-1C选择题可以用特殊值法-.-
(1)2=√4再问:对不起,可能表述不大清楚,原题如下:1.设2+√6的整数部分和小数部分分别是x和y,则x=?,y=?2.比较大小(1+√3)/2与(√2/2)+13.比较大小(√11-3)/7与1
∵x,y,1-x-y是三角形的三边长∴x>0,y>0,1-x-y>0,并且x+y>1-x-y,x+(1-x-y)>y,y+(1-x-y)>x∴x+y−12>0y−12<0x−12<0,故选A.
解题思路:利用一次函数的图象找出Y的取范围,并可以求出三角形的面积。解题过程:解:∵点P的坐标为(x,y),点Q的坐标为(4,0)∴△POQ的面积S=1/2OQ∙y=2y(S是y的正比例函数)由直线y
面积A=∫∫dS,S的方程是x+y=1,即y=1-x,dS=√(1+1+0]dzdx=√2dzdx.求S在zOx面上的投影区域.x+y=1与zox面的交线是x=1.x+y=1与z=xy的交线在zOx面
先判断2根号6的大小,看整数是几.根号6大于2(根号4)小于3(根号9),所以2根号6大于4小于5,x=4,y=2(根号6)-4=(根号6)-2
设D2:由y=x^3y=-x^3x=-1所围成的区域.D3:由y=x^3y=-x^3y=1所围成的区域.则根据重积分的区域可加性和对称性:∫∫(D)(xy+cosxsiny)dxdy=∫∫(D2)(x
原式=6∫dx∫(2x+y+(1-x-y)+1)dy(∵x+y+z=1,作图分析约去)=6∫dx∫(x+2)dy=6∫(x+2)(1-x)dx=6∫(2-x-x²)dx=6(2-1/2-1/
球面在第一卦限的法向量为(x0,y0,z0),切平面方程为(x-x0)x0+(y-y0)y0+(z-z0)z0=0,即xx0+yy0+zz0=1.与三坐标轴的交点为(1/x0,1/y0,1/z0),四
平面方程两边乘以4,得z+2x+4\3y=4,所以积分∫∫(z+2x+4\3y)ds=∫∫4ds,接下来计算平面与三坐标轴的三个交点围成的△的面积即可.方法不唯一,比如计算四面体的体积,而原点到平面的
作y=-x,在D2上,由于区域关于x轴对称,因此可考虑y的奇偶性,xy与cosxsiny关于y均为奇函数,因此在D2上积分为0,这样积分区域只剩下D1.在D1上,由于区域关于y轴对称,因此考虑x奇偶性
∑:0再问:答案是4√61再答:解1∑:0
取Ω:x²+y²≤1和z≤1、x≥0、y≥0∫∫∫ΩxydV=∫(0,π/2)dθ∫(0,1)rdr∫(0,1)(rcosθ)(rsinθ)dz=∫(0,π/2)(1/2)(sin