设方阵A满足矩阵方程A-3A-10E=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:09:13
(A-3E)(A+3E)=E所以A-3E可逆,A-3E的逆矩阵是A+3E
因A^3+2A-3E=0变形A^3+2A=3E即A[1/3(A^2+2E)]=E也就是存在B=1/3(A^2+2E)使得AB=BA=E按定义知A可逆且逆矩阵A^(-1)=1/3(A^2+2E)
A*A-A-2E要写成:A^2-A-2E,A^2-A-2E=(A+E)(A-2E)?不可能有A+E可逆,是否再看一下题,
移项得A²+3A=2E或A²+3AE=2E由矩阵乘法的右分配律得(1/2)A(A+3E)=E∴(A+3E)可逆且A+3E的逆矩阵为(1/2)A
因为A^2-4A+3E=0所以A(A-2E)-2(A-2E)-E=0所以(A-2E)(A-2E)=E所以A-2E可逆所以2E-A可逆所以B=(2E-A)^T(2E-A)是正定矩阵--正定合同于单位矩阵
A*A=A,A*A-A=0,A*A-A-12E=-12E(A+3E)(A-4E)=-12E,由于|(A+3E)*(A-4E)|=|A+3E|*|A-4E|=(-12)^n≠0(设A是n阶方阵),所以A
1,A(A+E)=7E,所以,A,A+E可逆,A^(-1)=(A+E)/7,(A+E)^(-1)=A/72,A^2+A-7E=0,A^2+A-6E=E,(A+3E)(A-2E)=E,所以A-2E可逆,
A^2-5A+7E=0;A^2-5A+6E=-E;(A-2E)(A-3E)=-E;(3E-A)(A-2E)=E;即3E-A可逆,逆矩阵为A-2E
直接求出逆阵就说明了其可逆了A^3+3A^2+3A+E=0A(-A^2-3A-3E)=E从而A的逆阵为-A^2-3A-3E
汗啊,是平方啊…………我以为是伴随呢…………A²-A+E=0E=A-A²=A(E-A)(E-A)A=A-A²=E所以A可逆,逆矩阵是E-A
(A+E)^3=A^3+3A^2+3A+E=0A(A^2+3A+3E)=-E所以A可逆,A^-1=-(A^2+3A+3E)
A²-3A-E=0A^2-3A=EA(A-3E)=E因此A可逆,且其逆矩阵为A-3E
证明:因为A^2-2A+3I=0所以A(A-2I)=-3I所以A可逆,且A^-1=(-1/3)(A-2I).又由A^2-2A+3I=0得A(A-3I)+A-3I+6I=0所以(A-3I)(A+I)=-
(A+E)(A平方-A-E)=-4E-4除过来根据定义来
由:A^2-3A-10E=0得:A^2-3A=10E得:(1/10)[A^2-3A]=E即:(1/10)A(A-3E)=E.按定义有:A^(-1)=(1/10)(A-3E).(若AB=E,则A^(-1
首先由|A+3E|=0知-3是A的一个特征值(a是A的特征值当且仅当|A-aE|=0),所以A^(-1)有特征值1/(-3)=-1/3;由AA^T=2E知|AA^T|=2,所以|A||A^T|=|A|
A^2-2A+4I=0A^2-2A-3I=-7I(A+I)(A-3I)*(-1/7)=I所以A+I和A-3I都可逆,且A+I的逆矩阵为(3I-A)/7A-3I的逆矩阵为-(A+I)/7
A^2-A-2I=OA(A-I)=2I所以A可逆A^-1=1/2(A-I)