设方阵A满足A的平方-A-2I=0,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:04:03
设方阵A满足A的平方-A-2I=0,
设方阵A满足A^2-A-2I=0,证明:(1)A和I-A都可逆,并求它们的逆矩阵(2)A+I和A-2I不同时可逆

(1)A^2-A-2I=0A^2-IA-2I=0A^2-IA=2IA(I-A)=2I把2除到左边去A逆=(I-A)/2(I-A)逆=I/2

设4阶方阵A满足条件:| 3 I +A | = 0,AAT= 2I,| A | < 0,求A*的一个特征值.

由|3I+A|=0得|A-(-3)I|=0,所以,A有一个特征值-3由A×AT=2I,两边取行列式得:|A|×|A|=2^4=16,又|A|<0,所以,|A|=-4因为A×A*=|A|I,设A对应于特

设方阵A满足A²+3A-2E=0,证明方阵A+3E可逆,并求A+3E的逆矩阵.

移项得A²+3A=2E或A²+3AE=2E由矩阵乘法的右分配律得(1/2)A(A+3E)=E∴(A+3E)可逆且A+3E的逆矩阵为(1/2)A

设n阶方阵A满足:A的平方—A—2E=0,证明A及A+2E都可逆,并求其逆.

由题设得到A(A-E)=2E,那么A的逆就是1/2(A-E)而类似的(A+2E)(A-3E)=A²-A-6E=-4E,所以(A+2E)的逆为-1/4(A-3E)

设方阵A满足的平方-2A-E=0 ,证明A-2E 可逆,并求 (A-2E)的-1次方

因为A^2-2A-E=0所以A(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A.

设n阶方阵A满足A^2-A-2i=0 证明则必有A-i可逆

A^2-A-2i=A^2-A*I-2I=(A-I)*(A)-2I=0所以(A-I)*(A/2)=I所以A-I的逆为A/2

设方阵A满足A^2+4A+3I=0,试证A+2I可逆,并求(A+2I)^-1

∵(A+2I)·(A+2I)=A²+4A+4I=I∴A+2I可逆,且其逆为自身A+2I

若方阵A满足方程A平方-2A+3I=0,则A,A-3I都可逆,并求它们的逆矩阵,如何证明?

证明:因为A^2-2A+3I=0所以A(A-2I)=-3I所以A可逆,且A^-1=(-1/3)(A-2I).又由A^2-2A+3I=0得A(A-3I)+A-3I+6I=0所以(A-3I)(A+I)=-

设方阵A满足A平方+3A-E=0,则 (A+3E)的负1次方等于

A²+3A-E=0A(A+3E)=E所以(A+3E)^(-1)=A

设方阵A满足A^-3A+I=0 试证A可逆

A(A-3I)=-I不等于0|A||A-3I|=-1|A|不等于0A可逆

设A是n阶方阵,满足A*A-A-2i=0,证明A-2i与A+i不同时可逆

A*A-A-2i=0也就是(A-2I)(A+I)=0取行列式得|A-2I||A+I|=0也就是|A-2I|、|A+I|中必有一个为0那就不可逆了

设方阵A满足A2-A-2I=0,证明A和A+2I都可逆,并求A-1和(A+2I)-1.

因为A^2-A-21=0A(A-1)=21|A|*|A-1|=21|A|不等于0所以,A可逆而A^2=A+21|A+21|=|A|2不等于0,所以,A+21可逆A(A-1)=21A^-1=(A-1)/

设方阵A满足方程A^2-2A+4I=0,证明A+I和A-3I都可逆,并求他们的逆矩阵.

A^2-2A+4I=0A^2-2A-3I=-7I(A+I)(A-3I)*(-1/7)=I所以A+I和A-3I都可逆,且A+I的逆矩阵为(3I-A)/7A-3I的逆矩阵为-(A+I)/7

设N阶方阵A满足A^2-A-3I=0,怎么得出A-I可逆

(A-E)A=A^2-A=3E,因此(A-E)A/3=E,A-E可逆,其逆为A/3.

设方阵A满足A2(平方)-3A-2E=0,求(A-E)(-1次方)=?

A^2-3A+2E=(A-E)(A-2E)=4E, 由逆矩阵的定义有:A-E=1/4(A-2E)

设方阵A满足A^2 -A-2I=O,证明A为可逆矩阵,并求A^-1

A^2-A-2I=OA(A-I)=2I所以A可逆A^-1=1/2(A-I)

设方阵A满足A^2-A-2I=0,证明:A和A+2I都可逆

证:由A²-A-2I=0得A(A-I)=2I即A(A-I)/2=I所以A可逆,且A^(-1)=(A-I/2由A²-A-2I=0得(A+2I)(A-3I)=-4I即(A+2I)(A-

线性代数提问:设方阵A满足A的平方=A.证明A的特征值只能为0或1

设A的特征值为λ,则|A-λE|=0同时AA=A,所以|AA-λE|=0所以AA和A的特征值相同而又有AA的特征值是A的平方,所以λ^2=λ,所以λ=1或者0