设方阵A满足A²-2A 3E=0,证明A E可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:55:28
设方阵A满足A²-2A 3E=0,证明A E可逆
设方阵A满足2A^2+A-3E=0证明3E-A可逆

哎哟妈也线性代数.还是证明题,最受不了这个了.再问:呵呵呵呵呵呵......

设n阶方阵A满足A²=2A.证明A的特征值只能是0或2

证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.

设方阵A满足A*A-A-2E=0,证明矩阵A+E可逆,并求它.

A*A-A-2E要写成:A^2-A-2E,A^2-A-2E=(A+E)(A-2E)?不可能有A+E可逆,是否再看一下题,

设方阵A满足A²+3A-2E=0,证明方阵A+3E可逆,并求A+3E的逆矩阵.

移项得A²+3A=2E或A²+3AE=2E由矩阵乘法的右分配律得(1/2)A(A+3E)=E∴(A+3E)可逆且A+3E的逆矩阵为(1/2)A

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E

A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O

设n阶方阵A满足A^2-A-2E=0怎么证明A-E可逆?

因为A^2-A-2E=0所以A(A-E)=2E所以A-E可逆,且(A-E)^-1=(1/2)A.

设n阶方阵A满足A^2-A-2i=0 证明则必有A-i可逆

A^2-A-2i=A^2-A*I-2I=(A-I)*(A)-2I=0所以(A-I)*(A/2)=I所以A-I的逆为A/2

设方阵A满足A^2-A-2E=0 证明A及A+2E都可逆

A^2-A-2E=0A^2-A=2EA(A-E)=2E所以A/2与(A-E)互逆同理A^2-A-2E=0A^2-A-6E=-4E(A-3E)(A+2E)=-4E看出来互逆了吧?再问:恩谢谢我就不知道我

设n阶方阵A满足A^2=En 且 |A+En|不等于0,证明:A=En

A^2=AA=E===>A=A'=A^(-1)=A^*并且A不为0或(-E)因为E^2=E===>A^2-E^2=0===>(A+E)(A-E)=0--->A=EToyourquestion:IfAB

线性代数中,设方阵A满足A^2-2A+3E=0,如何证明 A-3E可逆.

证明:∵A^2-2A+3E=0∴A^2-3A+A-3E+6E=0A(A-3E)+(A-3E)=-6E(A-3E)(A+E)=-6E∴|(A-3E)(A+E)|=|A-3E||A+E|=|-6E|≠0∴

设4阶方阵满足|3E+A|=0 ,AAT=2E,|A|

由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|

设方阵A满足A^3-A^2+2A-E=0 ,证明: A及A-E均可逆.

因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-

证明:设n阶方阵A满足A^2=A,证明A的特征值为1或0

设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a

设N阶方阵A满足A^2-A-3I=0,怎么得出A-I可逆

(A-E)A=A^2-A=3E,因此(A-E)A/3=E,A-E可逆,其逆为A/3.

设方阵A满足等式A^2-3A-10E=0,证明A-4E可逆.

从A^2-3A-10E中分解出A-4E,A^2-3A-10E=(A-4E)(A+E)-6E=0,即(A-4E)(A+E)=6E,亦即(A-4E)(A+E)/6=E,由矩阵逆的定义可知A-4E可逆,且其

设方阵A满足A^2+A-E=0,证明A-E可逆并求出A-E

由已知,(A-E)(A+2E)=-E所以A-E可逆,且(A-E)^-1=-(A+2E).

设方阵A满足A^2-A-2I=0,证明:A和A+2I都可逆

证:由A²-A-2I=0得A(A-I)=2I即A(A-I)/2=I所以A可逆,且A^(-1)=(A-I/2由A²-A-2I=0得(A+2I)(A-3I)=-4I即(A+2I)(A-

设n阶方阵A满足A^2+A+2E=0,则(A+E)^-1=?

由A^2+A+2E=0,可以写成(-A/2)(A+E)=E,所以(A+E)^-1=-A/2.