设方阵A满足A^2-A-2E=0,证明:A及A 2E都可逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:21:51
哎哟妈也线性代数.还是证明题,最受不了这个了.再问:呵呵呵呵呵呵......
(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^
A*A-A-2E要写成:A^2-A-2E,A^2-A-2E=(A+E)(A-2E)?不可能有A+E可逆,是否再看一下题,
移项得A²+3A=2E或A²+3AE=2E由矩阵乘法的右分配律得(1/2)A(A+3E)=E∴(A+3E)可逆且A+3E的逆矩阵为(1/2)A
证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^
Only_唯漪的证法我好像没有看懂的样子……果然代数都忘光了,这里给出一种Jordan标准型的证法参考一下:——————————————————————————————————————————∵R(E
A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O
因为A^2-A-2E=0所以A(A-E)=2E所以A-E可逆,且(A-E)^-1=(1/2)A.
证:由已知,A^2=E,(A+E)(A-E)=0所以r(A+E)+r(A-E)
A^-1=A+E,(A+2E)^-1=E-A.-----------------------------利用矩阵多项式总结一个类似题目的做法:引入多项式f(x)=x^2+x-1,g(x)=x,h(x)
A^2-A-2E=0A^2-A=2EA(A-E)=2E所以A/2与(A-E)互逆同理A^2-A-2E=0A^2-A-6E=-4E(A-3E)(A+2E)=-4E看出来互逆了吧?再问:恩谢谢我就不知道我
设方阵A满足A*A-A-2E=0,证明A和A+2E都可逆,并求1/A和1/(A+2E).第一题:因为A^k=0所以(E-A^k)=E而(E-A^k)=(E^k-A^k)=(E-A)(E+A+A的2次方
证明:∵A^2-2A+3E=0∴A^2-3A+A-3E+6E=0A(A-3E)+(A-3E)=-6E(A-3E)(A+E)=-6E∴|(A-3E)(A+E)|=|A-3E||A+E|=|-6E|≠0∴
首先由|A+3E|=0知-3是A的一个特征值(a是A的特征值当且仅当|A-aE|=0),所以A^(-1)有特征值1/(-3)=-1/3;由AA^T=2E知|AA^T|=2,所以|A||A^T|=|A|
由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|
式子化成(A+E)(A-3E)=-2E由逆矩阵定义得满足AB=E则A,B互为逆矩阵所以A+E可逆逆矩阵为(A-3E)/(-2)
因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-
从A^2-3A-10E中分解出A-4E,A^2-3A-10E=(A-4E)(A+E)-6E=0,即(A-4E)(A+E)=6E,亦即(A-4E)(A+E)/6=E,由矩阵逆的定义可知A-4E可逆,且其
由已知,(A-E)(A+2E)=-E所以A-E可逆,且(A-E)^-1=-(A+2E).
由A^2+A+2E=0,可以写成(-A/2)(A+E)=E,所以(A+E)^-1=-A/2.