设数列an的前n项为sn等于2n的平方,bn为等比数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:56:26
设数列an的前n项为sn等于2n的平方,bn为等比数列
设数列an的前n项和为sn,sn=n^2+n,数列bn的通项公式bn=x^(n-1)

S_n=n^2+n,S_(n-1)=〖(n-1)〗^2+n-1,∴a_n=S_n-S_(n-1)=2n (n>1),验证当n=1时,a_1=S_1=2,∴n=1时亦立,∴a_n=2n,

设数列{an}的前n项和为Sn=2an-2n,

(Ⅰ)因为a1=S1,2a1=S1+2,所以a1=2,S1=2,由2an=Sn+2n知:2an+1=Sn+1+2n+1=an+1+Sn+2n+1,得an+1=sn+2n+1①,则a2=S1+22=2+

设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2,求数列AN的通项公式

等比数列定义an+1=qanq不为零,且各项不为零等差数列定义an+1-an=pp为常数你上面提到的两个问题分别把{an-2an-1}、{an/2^n}看成an

设数列{an}的前n项和为Sn=2n²+2n+1 则求通项公式为

Sn=2n²+2n+1Sn-1=2(n-1)^2+2(n-1)+1n>=2an=Sn-Sn-1=4n-2+2=4nn=1a1=5an={5(n=1);4n(n>=2)}

设Sn是数列an的前n项和,已知a1=1,an=-Sn*Sn-1,(n大于等于2),则Sn=

an=-Sn.S(n-1)Sn-S(n-1)=-Sn.S(n-1)1/Sn-1/S(n-1)=11/Sn-1/S1=n-11/Sn=nSn=1/n

设 数列{an}的前n项和为Sn,已知b*an - 2^n=(b-1)Sn

2^(n+1)-2^n=2*2^n-2^n=2^nb*an-2^n=(b-1)Sn,b*a(n+1)-2^(n+1)=(b-1)S(n+1)两式相减(左-左=右-右):[b*a(n+1)-2^(n+1

设数列{an}的前n项和为Sn,已知Sn=2an-2n+1,(n为下标,n+1为上标),求通项公式?

Sn=2an-2n+1,得,a1=2a1-2^2,得a1=4Sn=2an-2^(n+1),得Sn+1=2an+1-2^(n+2)两式相减,得an+1=2an+1-2an-2^(n+1)an+1=2an

设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列

证:第一种方法Sn+1=(n+1)[a1+a(n+1)]/2Sn=n(a1+an)/2Sn-1=(n-1)[a1+a(n-1)]/2a(n+1)=Sn+1-Sn=(n+1)[a1+a(n+1)]/2-

设数列{an}的前n项和为Sn,Sn=a

设数列{an}的前n项和为Sn,Sn=a1(3n−1)2(对于所有n≥1),则a4=S4-S3=a1(81−1)2−a1(27−1)2=27a1,且a4=54,则a1=2故答案为2

设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2

Sn+1=4an+2Sn=4a(n-1)+2相减得Sn+1-Sn=4an+2-4a(n-1)-2an+1=4an-4a(n-1)an+1-2an=2(an-2an-1)bn=2bn-1(2)求数列{a

设数列{an}的前n项和Sn=2(an-3),证明{an}为等比数列,并求通项公式

an=Sn-S(n-1)=2(an-3)-2[a(n-1)]-3=2an-2a(n-1)]an=2a(n-1)所以an是等比数列q=1S1=a1所以a1=2(a1-3)a1=6所以an=6*2^(n-

设数列{an}为正项数列,前n项的和为Sn,且an,Sn,an^2成等差数列,求an通项公式

因为an,Sn,an^2成等差数列所以2Sn=an^2+an2an=2Sn-2S(n-1)=an^2+an-a(n-1)^2-a(n-1)得:(an-a(n-1))(an+a(n-1))-(an+a(

设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,

/>n≥2时,an=Sn/n+2(n-1)Sn=nan-2n(n-1)S(n-1)=(n-1)an-2(n-1)(n-2)Sn-S(n-1)=an=nan-2n(n-1)-(n-1)an+2(n-1)

1.已知数列{an}的前四项和等于4,设前n项和为Sn,且n≥2时,an=1/2(根号Sn+根号Sn-1),求S10

1.a[n]=S[n]-S[n-1]=1/2(√S[n]+√S[n-1])==>√S[n]-√S[n-1]=1/2==>√S[10]-√S[4]=1/2*6=3,√S[4]=√4=2==>√S[10]

设数列an的首项a1等于1,前n项和为sn,sn+1=2n

a1=1a2=s2-a1=2-1=1a3=s3-a1-a2=4-1-1=2a4=s4-a1-a2-a3=6-1-1-2=2a5=s5-a1-a2-a3-a4=8-1-1-2-2=2a6=s6-a1-a

设数列{an}前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.

(1)当n=1时,T1=2S1-1因为T1=S1=a1,所以a1=2a1-1,求得a1=1(2)当n≥2时,Sn=Tn-Tn-1=2Sn-n2-[2Sn-1-(n-1)2]=2Sn-2Sn-1-2n+

已知数列{an}的通项公式an=log2[(n+1)/(n+2)](n∈N),设其前n项的和为Sn,则使Sn

an=log2(n+1)-log2(n+2)Sn=log2(2)-log2(3)+log2(3)-log2(4)+.+log2(n)-log2(n+1)+log2(n+1)-log2(n+2)=log

设数列{an}的前n项和为Sn,且Sn=2^n-1.

解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程: