设数列an满足a1等于2_an 1-an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:01:30
(Ⅰ)由已知,当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.而a1=2,所以数列{an}的通
记Sn=a1+a2/2+a3/3+a4/4……+an/n=An+B,则a1=S1=A+B,当n>=2时,an/n=Sn-S(下标n-1)=An+B-[A(n-1)+B]=A,an=An,所以,an={
两边同除an*an+1得:1/an-1/an+1=11/an+1-1/an=-1,所以数列{1/an}为等差数列1/an=1/a1+(-1)*(n-1)1/a31=1/2+(-1)*301/a31=-
an=nba(n-1)/(a(n-1)+n-1)an.a(n-1)+(n-1)an=nba(n-1)1+(n-1)[1/a(n-1)]=nb(1/an)(n-1)(1/a(n-1)+[1/(1-b)]
(Ⅰ)由题意可得数列{an}是首项为1,公比为3的等比数列,故可得an=1×3n-1=3n-1,由求和公式可得Sn=1×(1−3n)1−3=12(3n−1);(Ⅱ)由题意可知b1=a2=3,b3=a1
(1)根据题意,有An=(An-An-1)+(An-1-An-2)+…+(A2-A1)+A1=3-2^(2n-3)+3-2^(2n-5)+…+(3-2^3)+2再用分组求和法:=3n-【2^(2n-3
∵a1=2,∴a2=−12+1=-13,a3=−32,a4=2,依此类推,数列是周期为3的数列,∴a2010=a3=−32,故选C
an=(2^n)-1
令n=1时,a1=1*2*3=6;依题意:a1+2a2+3a3+.+nan=n(n+1)(n+2),a1+2a2+3a3+.+nan+(n+1)a(n+1)=(n+1)(n+2)(n+3)两式相减,得
a(n+1)-an=3*2^(2n-1)an-a(n-1)=3*2^(2n-3)...a3-a2=3*2^3a2-a1=3*2^1相加an-a1=3[2^1+2^3+2^5+2^7+...+2^(2n
(1)a1+3a2+…+3^(n-2)an-1=(n-1)/3a1+3a2+…+3^(n-1)an=(n-1)/3+3^(n-1)an=n/3an=(1/3)^n.(2)bn=n/an=n3^nSn=
a1+3a2+3²a3+…+3^(n-1)an=n/3a1+3a2+3²a3+…+3^(n-2)a(n-1)=(n-1)/3=n/3-1/3(n≥2)两式相减得:3^(n-1)an
应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-
稍等,题目不太清楚,能把数列的下标用括号括起来吗,这样容易弄混.再答:an=nba(n-1)/[a(n-1)+(n-1)]ana(n-1)=nba(n-1)-(n-1)an∵an≠0∴上式等号两边同时
1、a(n+1)/an=(n+2)/(n+1)a(n+1)/(n+2)=an/(n+1)设cn=an/(n+1)则c(n+1)=a(n+1)/(n+2),且c1=a1/(1+1)=1即c(n+1)=c
a(n+1)=2a(n)/[a(n)+2],a(1)=2>0,由归纳法知a(n)>0.1/a(n+1)=[a(n)+2]/[2a(n)]=1/2+1/a(n),{1/a(n)}是首项为1/a(1)=1
据题意:5+(n-1)*d=5*(n-1)+(1+2+···n-2)*d5+(n-1)*d=5n-5+{[(n-2)(n-1)]/2}*d5+n*d-d=5n-5+[(n^2)/2]*d-(3n/2)
由递推式有a2-a1=3*2a3-a2=3*2*4a4-a3=3*2*4^2.an-a(n-1)=3*2*4^(n-2)累加得an-a1=2*4^(n-1)-8得an=2*4^(n-1)-6于是bn=
a(n)=a(n-1)-2a(n)-a(n-1)=-2{an}为等差数列,公差d=-2an=31-2(n-1)=-2n+33再问:还有呢?再答:Sn=n(31-2n+33)/2=32n-n^2求数列{
n=1时,3a1=3a1,n=2时,3+3a2=4a2,a2=33(a1+a2+a3+······+an)=(n+2)an①n>=2时有:3(a1+a2+a3+······+a(n-1))=(n+1)