设总体X有密度 其中 是未知参数,X1 X2 Xn是来自总体X的样本最大似然估计
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 16:59:00
你的f(x)={λ^2*x*e^(-λx),x>0 }是这样的么.回答如下,希望能有所帮助:).N个样本的联合概率函数,即参数的似然函数为则对数似然函数为对求导,则得.即为的极大似然估
/>矩法估计思路大概就是先找出参数与期望之间的关系,然后用样本矩(样本平均数)代替期望,对参数进行估计.具体步骤如下:所以参数的估计值是样本平均数的三倍.如果还有问题再问我吧.
首先应该是e(入)fxi(xi)=入e^(-入xi)i∈{1,2,...n}把所有乘一起,设联合密度=pp(x1,x2,x3.,xn)=入^ne^(-入nx)注意下面这个E(X)是期望值E(X)=1/
X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.
根据无偏估计的定义,统计量的数学期望等于被估计的参数,具体到这里就是说E(c*X的平均值)=θ又由期望的性质E(c*X的平均值)=cE(X的平均值)=θ那么E(X的平均值)=θ/c又E(X的平均值)其
该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对
1、∑(Xi-x)^2/σ^2~χ(n-1)2、样本方差S^2的定义:S^2=(1/(n-1))*∑(Xi-x)^2两者系数比较一下,选择C
极大似然估计的方法:1、构造似然函数,L(x1,x2,...,xn)=每个Xi密度函数的连乘.每个Xi的密度函数与总体的密度函数相同.2、求L(x1,x2,...,xn)或lnL(x1,x2,...,
(1).X的密度函数f(x)=1/(2Ө-Ө)=1/Ө,(Ө≤x≤2Ө);f(x)=0,其他.EX=∫[Ө,2Ө]x
u=∫x/(θ-5)dx=x^2/2(θ-5)│(5~θ)=(θ+5)/2而μ‘=x’故(θ‘+5)/2=12得到θ’=19
1.由伽方分布的性质有:\x0dY=X1+X2+...+Xn服从自由度为nm的伽方分布,记其密度为fY(t).\x0d2.样本均值Z=Y/n,Z的分布函数记为FZ(z)=P{Z<=z}=P{Y&
(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1…Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的
矩估计E(x)=∫(-∞,+∞)f(x)xdx=θ/(1+θ)X'=Σxi/n=E(x)=θ/(1+θ)θ=x'/(1-x'),其中Σxi/n最大似然估计f(xi.θ)=θ^nx1^(θ-1)x2^(
数学期望你会算吧.三道大题计算量太大了.我说一下怎么做算了.一阶矩估计就是求数学期望.,一个参数时求一下期望就能得到了.最后的那个期望改写成x拔,那个x拔=一个含预估参数的表达式,反过来用x拔表达参数