设在点无限次可导,其泰勒展开式为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:00:58
有.只要按照马克劳林公式的一般形式f(x)=连加(n从0到无穷)x^n*f^(n)(0)/n!展开(其中f^(n)(0)表示f的n阶导数在0点的值),只不过最后的每项的形式没什么规律(这也取决于f^(
Matlab好亲切的名字啊,当初系里的老师强烈推荐这个软件,以至于周边Matlab盗版碟绝迹了.可惜我没买到,帮不了楼主了.
答案错了,应该是√2.看自变量用的是z,你这题是复变里的吧?学了复变函数应该知道,1/(1+z²)在复平面上z=±i以外的区域解析.而解析函数在任意一点Taylor展开的收敛半径=以该点为圆
可以,把展开式中x全换成x^2就行了
这是04年的题目吧,因为你并不知道在x=0的时候T(x)的到数等于多少,criticalnumber是不能用估计来做的.这种题今年应该不会考吧
1.泰勒展开只是对于一小段区域而言的,不是整体性质.2.为什么满足那个条件就能使这两个函数那么相似?(因为有一个余项所以不能叫相同)那个条件的意义是什么你知道吗?其本质是它们两个函数(记右边的逼近函数
我晕,高等代数上不是经常有这个吗?
是公式的余项也就是误差公式是说比x-x0的n次方更高阶的无穷小量也就是当x-x0趋于0时Rn(x)/[(x-x0)^n]也趋于0
芳心似水激情如火梦想鼎沸
泰勒展开式(Taylorseries)-
根2收敛半径必须满足在这个域内解析.,1到3的距离是2,1到i的距离是根2,选择其中较短的距离可以保证在这个域内解析
tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835+...+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+.(|x|
泰勒展开式一般形式:f(x)=f(x0)+f(x0)'(x-x0)+[f(x0)''/2!](x-x0)^2+···+[f(x0)^(n)/n!]*(x-x0)^n+Rn(x)Rn(x)=[f(sx)
设原式为(A\x-2)+(B\x-6),A=1\4,B=3\4,原式为1/4(1/x-2)+3/4(1/x-6),再化成1/1+x的型,然后泰勒公式展开
symsx;taylor(exp(-2*x),7)
首先可以说是,也可以说不是.你注意泰勒展开式的定义式子,都是导数乘以(x-a),如果你直接用x^2代替了x,那么左边都变成x^2-a了,那么此时,等式是成立的,但是他前面的系数也不是(1+x^2)^(
ln(1+x)在x=0处的展开式是ln(1+x)=x-x^2/2+x^3/3-x^4/4+.+(-1)^(n+1)*x^n/n+.(-1再问:e..是的我二阶导求导求错了。另外问一下,如果遇到求f(0