设函数z=ysin(xy) (1-xy)arctan根号x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:22:54
设函数z=ysin(xy) (1-xy)arctan根号x
偏导数设二次函数Z=X^xy,求∂z/∂x,∂z/∂y.

第一个:z=x^xy=e^[ln(x^xy)]=e^(xylnx)令u=xy*lnx,则z=e^u∂z/∂x=(x^u)'•u'=(e^u)•(xyln

设由方程xy+yz+xz=1,确定函数z=f(x,y),求∂2z/∂(x^2)

y+y∂z/∂x+z+x∂z/∂x=0∂z/∂x=-(y+z)/(x+y)∂2z/∂x2=【∂

1、设f可微,写出由方程f ( xy,yz,x-z ) = 0所确定的函数z = g (x,y)的偏导数Z'x和Z'y

df/dx=f'(xy,yz,x-z)(y+y*dz/dx+1-dz/dx)=0(1-y)dz/dx=f'(xy,yz,x-z)*(y+1)dz/dx=f'(xy,yz,x-z)*(y+1)/(1-y

设函数f与g均可微,z=f(xy,lnx+g(xy)),则x*z关于x的微分-y*z关于y的微分=

设u=xy,v=lnx+g(xy),则x(∂z/∂x)-y(∂z/∂y)=∂f/∂v.原因如下:dz=(∂f/

设函数Z=Z(X,Y) 由方程XY=e^z-z所确定的隐函数,求a^2z/axay

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

设方程xz+yz+xy=e的定函数z=z(x,y),求dz

两边同时微分zdx+xdz+zdy+ydz+xdy+ydx=0(x+y)dz+(y+z)dx+(z+x)dy=0dz=-[(y+z)dx+(z+x)dy]/(x+y)

设z=z(x,y)是方程x^2+z^2=ysin(z/x)确定的隐函数,求Z对x,y的偏导数

1、对X求导(导数符号无,用“£”代替)两边对x求导有:2x2z£z/£x=-ycos(z/x)/x^2*£z/£x:化简得:£z/£x=-2x/[2zycos(z/x)/x^2]:2、对y求导两边求

设Z=F(X,Y)是由方程E^Z-Z+XY^3=0确定的隐函数,求Z的全微分Dz

对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)

设z=f(x,y)是由方程e^z-Z+xy^3=0确定的隐函数

e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/

设函数z=(x,y),由方程x+2y+xy-z-exp(z)=0确定,且Z(1,0)=0,Zx(1,0),Zy(1,0)

x+2y+xy-z-exp(z)=0.(1)对(1)两边同时对x求偏导1+y-Zx-(e^z)*Zx=0.(2)Zx=(1+y)/(e^z+1)故Zx(1,0)=1/(e^0+1)=1/2对(1)两边

设函数f(z)=1/((z+10)*(z+3)*(z-2)) 重赏!

首先f(z)的孤立奇点只有z=2,z=-3,z=-10这三个,而f(z)在同一个圆环域内部展开成洛朗级数是唯一的,所以本题要找的其实就是分别以这三个孤立奇点为圆心的最大解析圆环域有多少个,对于z=2,

设函数z=z(x,y)由方程e^(-xy)-2z+e^z=0确定,求z/x,z/y

两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,

设函数z=f(xy,y/x)具有二阶连续偏导数,求 a^2z/axay

设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1

设由方程xy+yz+xz=1,确定函数z=f(x,y),求∂^2z/∂x^2

y+y∂z/∂x+z+x∂z/∂x=0∂z/∂x=-(y+z)/(x+y)y∂2z/∂x2+2ͦ

设函数z=1/xf(xy)+yg(x+y),其中f,g二次可导,求偏导数 就是求a^2z/axay

传了张图片,不怎么清楚,凑合一下思路就是按照多元复合函数求导来一步一步求解.有问题再追问.先打这么多了. 答案是a^2z/axay=y*f ''(xy)+g'

设函数z=f(xy,e^x+y),其中f.,求一阶偏导数?

令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)

设函数z=xy-y/x,求全微分dz=

dz=(y+y/(X^2))dx+(x-1/x)dy,

设函数z=xyln(xy),求全微分dz

dz=[yIn(xy)+y]dx+[xIn(xy)+x]dy分开求导

求函数z=ysin(x-y)的全微分和偏导数

先求偏导数:zx=ycos(x-y)zy=sin(x-y)-ycos(x-y)明显,两偏导数都连续故全微分存在dz=zxdx+zydy=ycos(x-y)dx+[sin(x-y)-ycos(x-y)]