设函数z=ysin(xy) (1-xy)arctan根号x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:22:54
第一个:z=x^xy=e^[ln(x^xy)]=e^(xylnx)令u=xy*lnx,则z=e^u∂z/∂x=(x^u)'•u'=(e^u)•(xyln
y+y∂z/∂x+z+x∂z/∂x=0∂z/∂x=-(y+z)/(x+y)∂2z/∂x2=【∂
df/dx=f'(xy,yz,x-z)(y+y*dz/dx+1-dz/dx)=0(1-y)dz/dx=f'(xy,yz,x-z)*(y+1)dz/dx=f'(xy,yz,x-z)*(y+1)/(1-y
设u=xy,v=lnx+g(xy),则x(∂z/∂x)-y(∂z/∂y)=∂f/∂v.原因如下:dz=(∂f/
e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(
两边同时微分zdx+xdz+zdy+ydz+xdy+ydx=0(x+y)dz+(y+z)dx+(z+x)dy=0dz=-[(y+z)dx+(z+x)dy]/(x+y)
1、对X求导(导数符号无,用“£”代替)两边对x求导有:2x2z£z/£x=-ycos(z/x)/x^2*£z/£x:化简得:£z/£x=-2x/[2zycos(z/x)/x^2]:2、对y求导两边求
对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
x+2y+xy-z-exp(z)=0.(1)对(1)两边同时对x求偏导1+y-Zx-(e^z)*Zx=0.(2)Zx=(1+y)/(e^z+1)故Zx(1,0)=1/(e^0+1)=1/2对(1)两边
首先f(z)的孤立奇点只有z=2,z=-3,z=-10这三个,而f(z)在同一个圆环域内部展开成洛朗级数是唯一的,所以本题要找的其实就是分别以这三个孤立奇点为圆心的最大解析圆环域有多少个,对于z=2,
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1
y+y∂z/∂x+z+x∂z/∂x=0∂z/∂x=-(y+z)/(x+y)y∂2z/∂x2+2ͦ
dz=2xdy+2ydx
传了张图片,不怎么清楚,凑合一下思路就是按照多元复合函数求导来一步一步求解.有问题再追问.先打这么多了. 答案是a^2z/axay=y*f ''(xy)+g'
令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)
dz=(y+y/(X^2))dx+(x-1/x)dy,
dz=[yIn(xy)+y]dx+[xIn(xy)+x]dy分开求导
先求偏导数:zx=ycos(x-y)zy=sin(x-y)-ycos(x-y)明显,两偏导数都连续故全微分存在dz=zxdx+zydy=ycos(x-y)dx+[sin(x-y)-ycos(x-y)]