设函数f (x)=x^3 ax^2-a^2x 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:57:19
等一下,答案立马给你再答:再问:亲,继续啊。再答:再问:在三角形ABC中,a,b,c分别是角A,B,C的对边,且(2a+b)cosC+cosB=0求角C若a,b,c成等差数列,b=5,求三角形A,B,
存在.∵b>0,①当a>0时,定义域是包含x=-ba<0,值域是f(x)≥0,不可能相等;②当a=0时,定义域是x≥0,值域也是f(x)≥0,符合题意;③当a<0时,定义域是[0,−ba],值域是[0
已知函数f(x)=e^x+ax²+bx.设函数f(x)在点(t,f(t))(0
http://hi.baidu.com/xiaozhaotaitai/album/item/dcf69b2473a08f134d088d77.html
最小斜率就是与曲线y=f(x)相切的直线的最小斜率对函数f(x)=x^3+ax^2-9x-1(a
只有一个公共点则x^3+ax^2-a^2x+1=ax^2-2x+1只有一个解x^3+(2-a^2)x=0x(x²+2-a²)=0x=0是解所以x²+2-a²=0
解题思路:(I)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间.(Ⅱ)当a=1/2时,g(x)=x(f(x)+1)=x(lnx-1/2x+1)=xlnx+x-1/2x2,(x>1)
1.求导数,得f'(x)=3x^2-2ax-3将极值点的横坐标-1/3代入方程f‘(x)=0解得a=4那么写出原函数单调区间负无穷到-1/3,递增-1/3到3,递减3到正无穷,递增那么在【1,4】上,
令f′(x)=0,解得x=2或x=a.①a≥2,则当x∈(2,2)时,f′(x)0,函数f(x)在(2,2)上单调递增,所以,当x=2时,函数f(x)取得最小值,最小值为f(2)=(4+a)e.综上,
a=1先求导,把X=2代入导函数中令导函数等于零,得a=1再验证:将a=1代入原导函数中,求该函数的极值,得到2确为该函数的极值(极小值).所以a=1
(1)依题意有,f′(x)=1x-2a.因此过(1,f(1))点的直线的斜率为1-2a,又f(1)=-2a,所以,过(1,f(1))点的直线方程为y+2a=(1-2a)(x-1).即(2a-1)x+y
大致画个图先因为f(x+1)=f(-x-3)所以f(1)=f(-3)所以f(x)对称轴为x=-1又因为f(-2)>f(2)因为-2比2距离对称轴更近显然a=-1-2x^2+2x-3=-(x-1/2)^
解题思路:设g(x)=e^x(2x-1),y=ax-a,则存在唯一的整数x0,使得g(x0)在直线y=ax-a的下方,由此利用导数性质能求出a的取值范围.解题过程:
首先,对函数f(x)求导,得到:f'(x)=a-2/x^3由题,函数f(x)在x∈(3,+∞)上为增函数,则f'(x)在x∈(3,+∞)上非负!即:f'(x)=a-2/x^3≥0得到:a≥2/x^3而
求导你学过吧1对f(x)求导=2a+b/x^2+1/x设为0,得到2ax^2+x+b=0,有两个值1和1/2算出a=-1/3b=-1/3对求过导的函数再求一次导=1/3x^3-1/x^2当x=1时,这
f(x)=-6是不是写掉了条件哦还有X的定义域呢?
由f(x)=-1/3x^3+2ax^2+1/3a(0
f'(x)的导数:3ax^2-6x.令其x=2代入式子等于零即可.可以算出a=1(2)g(x)是单调减函数.可以得出g(x)的导数小于零的.g'(x)的导数:e^xf(x)(f(x)+xf'(x)=e
|ax+2|
若a≥0,则函数本身就是增函数,增区间(0,+∞)若a<0,f′(x)=2ax+1/x=(2ax²+1)/x,在(0,√(-1/2a))增,在(√(-1/2a),+∞)减再问:√(-1/2a