设二维连续随机变量kxy^2判断XY是否独立相关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:23:40
设二维连续随机变量kxy^2判断XY是否独立相关
概率论与数理统计题3设二维连续型随机变量(X,Y)的联合分布函数为F(x,y)=A(B+arctanx/2)(C+arc

(1)limA(B+arctanx/2)(C+arctany/2)=0-无穷limA(B+arctanx/2)(C+arctany/2)=1+无穷所以A=1/πB=π/2C=π/2(2)接下去就是求导

设二维连续型随机变量(X,Y)的联合分布函数为F(x,y)=A(B+arctanx/2)(C+arctany/3),判断

F(x,y)=A(B+arctanx/2)(C+arctany/3)F(-∞,-∞)=A(B-π/2)(C-π/2)=0F(-∞,+∞)=A(B-π/2)(C+π/2)=0F(+∞,-∞)=A(B+π

二维连续型随机变量独立的充要条件为

密度函数是f(x,y)能够写成g(x)和h(y)的乘积

关于中'二维连续型随机变量'的问题

你是说偏微分符号?一元变量不是求一次微分就得到了密度函数吗?多元变量就是求两个方向的偏导函数.你都没学微积分怎么要学概率论的呢?

设连续型随机变量X在[-π2

设Y的概率密度为fY(x),分布函数为FY(x),由于X在[-π2,π2]上服从均匀分布∴Y=cosX∈[0,1],因此,对于∀y∈[0,1],有FY(y)=P(Y≤y)=P(cosX≤y)=P(ar

关于二维连续型随机变量的概率密度

首先2作为常数可拿到积分号外,即2∫∫dxdy,而由于二重积分的被积函数=1,则积分结果等于积分区域D的面积,即∫∫dxdy=1/4

概率统计问题,二维连续型随机变量问题,设二维随机变量(X,Y)的联合概率密度为

再问:为什么是用“1-”,而不能用整个面积去减?还有(4)的x的取值为什么是0到1而不是Y到1?我一直搞不懂这些取值是怎么定的?还有我最后一题看不懂...再答:第一个问题:整个面积的积分的概率就是等于

设二维连续型随机变量(X,Y)的概率密度当0

联合密度有问题,改为4xy就行了fX(x)=∫[0,1]4xydy=2x(0

设二维连续型随机变量(X,Y)具有概率密度f(x,y)=2,当0

再问:E(Y)的答案是5/3,我之前算了好几遍都是得9/7,可答案却不是,所以我才提问的,难道是我书的答案错了?

一道连续型随机变量问题:设二维随机变量(X,Y)的密度函数

1、由密度函数的性质∫[0--->+∞]∫[0--->+∞]Ae^(-2x-3y)dxdy=1即:A∫[0--->+∞]e^(-2x)dx∫[0--->+∞]e^(-3y)dy=1得:A[-(1/2)

设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其中D={(X,Y)|0

有两种方法:第一可用卷积公式直接写答案,第二可以用一般的求法,就是把X+Y=Z当成一函数图象.然后利用积分区间讨论Z的范围,进而得到其概率密度函数,概率论与统计书上有的

设二维连续型随机变量(X,Y)的联合分布函数为F(x,y)=A(B+arctanx/2)(C+arctany/3)求AB

利用概率分布函数特性F(正无穷,正无穷)=1,F(负无穷,负无穷)=0,带入就是A(B+π/2)(C+π/2)=1A(B-π/2)(C-π/2)=0展开后,两式相加:ABC=1/2-(π^2)/4再问

大二概率题设二维连续型随机变量(X,Y)在区域D:0

1)E(X)=E[E(X|Y)],就是先对某Y值上的X积分再对全局积分2)你求出面积,其倒数就是了.3)E(Z)=E(2X+Y)=2E(X)+E(Y)之后如1计算X和Y期望,D(Z)=E(Z^2)-E

设二维随机变量(X,Y)服从园域G:x^2+y^2

画出图形,对x积分得到fY(y),画一条水平线交圆于2点,其横坐标分别是-√R^2-y^2,√R^2-y^2,也就是积分上下限.对y积分可得到fX(x).同理画一条垂直线交圆于2点,纵坐标分别是-√R

关于概率.二维连续型随机变量函数的分布.

题目打错了吧,应当是Y~fY(y),表示Y在[0,1]上服从均匀分布