设二维连续型随机变量x,y的分布函数为A(B arctanx 2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:07:52
设二维连续型随机变量x,y的分布函数为A(B arctanx 2)
概率论与数理统计题3设二维连续型随机变量(X,Y)的联合分布函数为F(x,y)=A(B+arctanx/2)(C+arc

(1)limA(B+arctanx/2)(C+arctany/2)=0-无穷limA(B+arctanx/2)(C+arctany/2)=1+无穷所以A=1/πB=π/2C=π/2(2)接下去就是求导

设二维连续型随机变量(X,Y)的联合分布函数为F(x,y)=A(B+arctanx/2)(C+arctany/3),判断

F(x,y)=A(B+arctanx/2)(C+arctany/3)F(-∞,-∞)=A(B-π/2)(C-π/2)=0F(-∞,+∞)=A(B-π/2)(C+π/2)=0F(+∞,-∞)=A(B+π

概率统计问题,二维连续型随机变量,已知二维随机变量(X,Y)的联合概率密度为

5题:f(x,y)=ke^(-y),00.f(y)=∫[0,y]e^(-y)dx=ye^(-y),y>0.(4)f(x|y)=f(x,y)/f(y)=1/y,0再问:第5题的(6)(7)题,麻烦你了,

概率统计,二维连续型随机变量,已知二维随机变量(X,Y)的联合概率密度为

再问:额,第一题的积分公式是什么?再问:什么时候可以把指数放在前面?负的指数能放前面吗?就是像x^2的积分是1/3x^3,我好像一直用错公式了。再问:我再想想再问:我好像知道了。。。我再看看再问:第三

设二维连续型随机变量(X,Y)的联合概率密度为f(x,y)=(1+xy)/4,│x│

(1)f(x)=∫f(x,y)dy=1/2f(y)=∫f(x,y)dx=1/2x,y是均匀分布(2)E(X)=0,E(y)=0D(X)=∫f(x)x²dx=1/3,D(Y)=∫f(y)y&#

概率统计问题,二维连续型随机变量问题,设二维随机变量(X,Y)的联合概率密度为

再问:为什么是用“1-”,而不能用整个面积去减?还有(4)的x的取值为什么是0到1而不是Y到1?我一直搞不懂这些取值是怎么定的?还有我最后一题看不懂...再答:第一个问题:整个面积的积分的概率就是等于

设二维连续型随机变量(X,Y)的概率密度当0

联合密度有问题,改为4xy就行了fX(x)=∫[0,1]4xydy=2x(0

设二维连续型随机变量(X,Y)具有概率密度f(x,y)=2,当0

再问:E(Y)的答案是5/3,我之前算了好几遍都是得9/7,可答案却不是,所以我才提问的,难道是我书的答案错了?

概率论设二维随机变量(x,y)的联合密度函数

1)c(∫(0~2)ydy)(∫(0~2)xdx)=14c=1c=1/42)一看互相不干涉取值就可以说是独立了fx=(1/4)∫(0~2)xydy=x/2(0

设二维随机变量(X,Y)的概率密度为

注:这是2007年考研数学一第23题,楼主随便在网上搜一下“2007年数学一答案”,就可以找到答案

设二维随机变量(X,Y)的联合分布律为:

我遭得住你是不是把老师不知道题都弄上来了哦嘿嘿当年我们怎么没想到这么个办法呢

一道连续型随机变量问题:设二维随机变量(X,Y)的密度函数

1、由密度函数的性质∫[0--->+∞]∫[0--->+∞]Ae^(-2x-3y)dxdy=1即:A∫[0--->+∞]e^(-2x)dx∫[0--->+∞]e^(-3y)dy=1得:A[-(1/2)

设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其中D={(X,Y)|0

有两种方法:第一可用卷积公式直接写答案,第二可以用一般的求法,就是把X+Y=Z当成一函数图象.然后利用积分区间讨论Z的范围,进而得到其概率密度函数,概率论与统计书上有的

设二维连续型随机变量(X,Y)的联合分布函数为F(x,y)=A(B+arctanx/2)(C+arctany/3)求AB

利用概率分布函数特性F(正无穷,正无穷)=1,F(负无穷,负无穷)=0,带入就是A(B+π/2)(C+π/2)=1A(B-π/2)(C-π/2)=0展开后,两式相加:ABC=1/2-(π^2)/4再问

大二概率题设二维连续型随机变量(X,Y)在区域D:0

1)E(X)=E[E(X|Y)],就是先对某Y值上的X积分再对全局积分2)你求出面积,其倒数就是了.3)E(Z)=E(2X+Y)=2E(X)+E(Y)之后如1计算X和Y期望,D(Z)=E(Z^2)-E