设二维连续型随机变量(X,Y)的联合概率密度为f(x,y)=cx^2y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:04:03
设二维连续型随机变量(X,Y)的联合概率密度为f(x,y)=cx^2y
概率论与数理统计题3设二维连续型随机变量(X,Y)的联合分布函数为F(x,y)=A(B+arctanx/2)(C+arc

(1)limA(B+arctanx/2)(C+arctany/2)=0-无穷limA(B+arctanx/2)(C+arctany/2)=1+无穷所以A=1/πB=π/2C=π/2(2)接下去就是求导

设二维连续型随机变量(X,Y)的联合分布函数为F(x,y)=A(B+arctanx/2)(C+arctany/3),判断

F(x,y)=A(B+arctanx/2)(C+arctany/3)F(-∞,-∞)=A(B-π/2)(C-π/2)=0F(-∞,+∞)=A(B-π/2)(C+π/2)=0F(+∞,-∞)=A(B+π

概率统计问题,二维连续型随机变量,已知二维随机变量(X,Y)的联合概率密度为

5题:f(x,y)=ke^(-y),00.f(y)=∫[0,y]e^(-y)dx=ye^(-y),y>0.(4)f(x|y)=f(x,y)/f(y)=1/y,0再问:第5题的(6)(7)题,麻烦你了,

概率统计,二维连续型随机变量,已知二维随机变量(X,Y)的联合概率密度为

再问:额,第一题的积分公式是什么?再问:什么时候可以把指数放在前面?负的指数能放前面吗?就是像x^2的积分是1/3x^3,我好像一直用错公式了。再问:我再想想再问:我好像知道了。。。我再看看再问:第三

请问下面这个二维连续型随机变量X和Y各自得边缘分布怎么求?

边缘分布,实际上就是单变量的分布.X的分布:X(0,1)对应(0.7,0.3).Y的分布:Y(0,1)对应分布(0.8,0.2)再问:我想知道0.7和0.3,0.8,0.2都是怎么算出来的再答:X的取

设二维连续型随机变量(X,Y)的联合概率密度为f(x,y)=(1+xy)/4,│x│

(1)f(x)=∫f(x,y)dy=1/2f(y)=∫f(x,y)dx=1/2x,y是均匀分布(2)E(X)=0,E(y)=0D(X)=∫f(x)x²dx=1/3,D(Y)=∫f(y)y&#

概率统计问题,二维连续型随机变量问题,设二维随机变量(X,Y)的联合概率密度为

再问:为什么是用“1-”,而不能用整个面积去减?还有(4)的x的取值为什么是0到1而不是Y到1?我一直搞不懂这些取值是怎么定的?还有我最后一题看不懂...再答:第一个问题:整个面积的积分的概率就是等于

设二维连续型随机变量(X,Y)的概率密度当0

联合密度有问题,改为4xy就行了fX(x)=∫[0,1]4xydy=2x(0

设二维连续型随机变量(X,Y)具有概率密度f(x,y)=2,当0

再问:E(Y)的答案是5/3,我之前算了好几遍都是得9/7,可答案却不是,所以我才提问的,难道是我书的答案错了?

概率论设二维随机变量(x,y)的联合密度函数

1)c(∫(0~2)ydy)(∫(0~2)xdx)=14c=1c=1/42)一看互相不干涉取值就可以说是独立了fx=(1/4)∫(0~2)xydy=x/2(0

设二维随机变量(X,Y)的概率密度为

注:这是2007年考研数学一第23题,楼主随便在网上搜一下“2007年数学一答案”,就可以找到答案

二维连续型随机变量(X,Y)的联合概率密度函数的问题

1)在第一象限内作以下三条曲线在第一象限内的部分y=xy=x^2x=1于是f(x,y)=k的区域即为这三条曲线围成的曲边三角形内部,记此区域为D其余部分f(x,y)均为零由归一化条件,(S表示积分号,

一道连续型随机变量问题:设二维随机变量(X,Y)的密度函数

1、由密度函数的性质∫[0--->+∞]∫[0--->+∞]Ae^(-2x-3y)dxdy=1即:A∫[0--->+∞]e^(-2x)dx∫[0--->+∞]e^(-3y)dy=1得:A[-(1/2)

设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其中D={(X,Y)|0

有两种方法:第一可用卷积公式直接写答案,第二可以用一般的求法,就是把X+Y=Z当成一函数图象.然后利用积分区间讨论Z的范围,进而得到其概率密度函数,概率论与统计书上有的

设二维连续型随机变量(X,Y)的联合分布函数为F(x,y)=A(B+arctanx/2)(C+arctany/3)求AB

利用概率分布函数特性F(正无穷,正无穷)=1,F(负无穷,负无穷)=0,带入就是A(B+π/2)(C+π/2)=1A(B-π/2)(C-π/2)=0展开后,两式相加:ABC=1/2-(π^2)/4再问

大二概率题设二维连续型随机变量(X,Y)在区域D:0

1)E(X)=E[E(X|Y)],就是先对某Y值上的X积分再对全局积分2)你求出面积,其倒数就是了.3)E(Z)=E(2X+Y)=2E(X)+E(Y)之后如1计算X和Y期望,D(Z)=E(Z^2)-E