设二次型f=x1^2 2x2^2 x3^2-2x1x2-2x2x3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:47:59
f(x1)=f(x2),表明对称轴为x=(x1+x2)/2=-b/(2a)因此有:x1+x2=-b/af(x1+x2)=f(-b/a)=a*b^2/a^2-b*b/a+c=b^2/a-b^2/a+c=
由于f(x1)=f(x2)∴x1与x2是关于对称轴对称的两横坐标的值(因为x1,x2不等,说明两点异侧)∵x1,x2的对称轴为(x1+x2)/2∴f[(x1+x2)/2]就是其顶点的函数值了f[(x1
实际上就是求矩阵A的特征值因为A中各行元素之和为3所以A*(1,1,1)T=3(1,1,1)T所以(1,1,1)T是属于特征值3的一个特征向量只能做到这里了还有什么条件吧再问:这就是全部的题目,让求的
f(x1,x2,x3)=(x1-x2)^2+(x2-x3)^2=x1^2-2x1x2+2x2^2-2x2x3+x3^2A=1-10-12-10-11
g(x)=f(x)-x=0g(x)=ax^2+(b-1)x+1=0此方程的两根一个为x1,另一个为x1+2或x1-2因为a>0,两根积为1/a>0,所以两个都为正根因此x2=x1+2x1(x1+2)=
1.求F(0)的值F(x1)+F(x2)=2F((x1+x2)/2)F((x1-x2)/2),x1=x2=x2F(x)=2F(x)F(0)F(0)=1F(x)+F(-x)=2F((x-x)/2)F((
1)记F(x)=f(x)-x=a(x-x1)(x-x2)F(x)为开口向上的抛物线,又x1,x2为F(x)与x轴的两交点当x0,所以f(x)>xf(x)=[F(x)+x-x1]+x1=[a(x-x1)
1.抛物线开口向上,对称轴=(1-b)/2ax2
用Lagrange乘子法,求一下偏导就出来了再问:Lagrange乘子法,没听过,能不能用简单的线性代数知识解答再答:当然也可以先对A是对角阵的情况进行证明,然后就好办了一般情况只要注意A可以正交对角
/>1.∵f(X1)+f(X2)=2f{(X1+X2)/2}f{(X1-X2)/2},令X2=X1,得2f(X1)=2f(X1)f(0),即有f(X1)[1-f(0)]=0又∵对任意实数x1上式都成立
(1)二次型的矩阵A=1t1t20101由A奇异知|A|=0.而|A|=-t^2所以t=0(2)此时A=101020101|A-λE|=-λ(λ-2)^2.所以A的特征值为λ1=0,λ2=λ3=2.对
由已知,f的矩阵A=20000101a与B=2000b000-1相似所以2+a=2+b-1且|A|=-2=|B|=-2b所以b=1,a=0.且A=200001010的特征值为2,1,-1(A-2E)x
由已知,ax1^2+bx1+c=ax2^2+bx2+c;即是a(x1^2-x2^2)=-b(x1-x2);所以有;x1+x2=-b/a;(由于x1-x2!=0);所以f((x1+x2)/2)=a((x
|F(x1)-F(x2)|=|根号下(1+x1^2)-根号下(1+x2^2)|=|(x1^2-x2^2)/(根号下(1+x1^2)+根号下(1+x2^2))|=|(x1-x2)||(x1+x2)/(根
答案错了,要求的值其实等于涵数的极值
f(x1)=f(x2),所以x1x2关于对称轴对称,所以x1+x2=2x(-b/2a)=-b/a所以f(x1+x2)=f(-b/a)=c
f(x1)=f(x2),因此函数对称轴为x=-b/(2a)=(x1+x2)/2.因此f[(x1+x2)/2]=f[-b/(2a)]=(4ac-b^2)/4a请采纳回答
二次型的矩阵A=200032023对特征值2,A-2E=000012021化为000010001基础解系为(1,0,0)'.再问:请问化为000010001后是因为右下角是二阶单位阵,所以在左上角添一
你弄反了递减的话,是:f(x1)-f(x2)>0因为x1-x2