设事件A,B,C相互独立,证明AUB与对立C独立
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:14:24
只需证明:P[(AUB)C]=P(AUB)*P(C).P[(AUB)C]=P[ACUBC]=P(AC)+P(BC)-P[(AC)(BC)](加法公式)=P(AC)+P(BC)-P[(ABC)]=P(A
相互独立:P(ABC)=P(A)P(B)P(C);P(BC)=P(B)P(C)所以:P(A逆BC)=P(BC-A)=P(BC-ABC)【这里是根据P(A-B)=P(A-AB)的定理得来的】=P(BC)
这是显而易见的啊,概率事件独立的定义.再问:既然显而易见,你说说也无妨嘛再答:我已经证明了,根据概率事件独立的定义即可证明。再问:ok,我表示现在脑残,请你打出来吧再答:独立的定义P(ABC)=P(A
1°证明:P(AB)=P(A)*P(B);P(AC)=P(A)*P(C);P(BC)=P(B)*P(C).P(ABC)=P(A)*P(B)*P(C)=P(AB)*P(C)P(A∪B)=P(A)+P(B
B-C就是B交上C的补集,也就是B交C补P(A交B-C)=P(A交B)-P(A交B交C)=P(A)P(B)-P(A)P(B)P(C)=P(A)[P(B)-P(B交C)]=P(A)P(B-C)由此得证
由B、C独立:P(A(B+C))=P(AB)+P(AC)由A、B独立,A、C独立:P(AB)=P(A)P(B),P(AC)=P(A)P(C)于是P(A(B+C))=P(A)(P(B)+P(C))=P(
A、B、C事件相互独立等价于:P(ABC)=p(A)P(BC)=p(B)P(AC)=P(C)P(AB)=P(A)P(B)P(C); (1)A、B、C事件两两独立等价于
P[(A+B)*C]=P(AC+BC)=P(AC)+P(BC)-P(AC*BC)=P(AC)+P(BC)-P(ABC)=P(A)*P(C)+P(B)*P(C)-P(A)*P(B)*P(C)=[P(A)
否,A、B、C、不是相互独立的(详见伯恩斯坦反例).A与B相互独立,B与C相互独立,C与A相互独立并且P(ABC)=P(A)P(B)P(C),则A、B、C相互独立.
由B、C独立:P(A(B+C))=P(AB)+P(AC)由A、B独立,A、C独立:P(AB)=P(A)P(B),P(AC)=P(A)P(C)于是P(A(B+C))=P(A)(P(B)+P(C))=P(
首先说明,两个事件A,B独立当且仅当P(AB)=P(A)P(B)因为A,B,C相互独立,所以P(ABC)=P(A)P(B)P(C),P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC
根据题意,只有A发生的概率也就是说A发生且B不发生,可立式(1),同理,只有B发生的概率也就是说B发生且A不发生,可立式(2),P(A)*(1-P(B))=1/4(1)(1-P(A))*P(B)=1/
定义:A,B相互独立,如果P(AB)=P(A)P(B).P(AB)≤P(A)=0-->P(AB)=0P(A)P(B)=0*P(B)=0P(AB)=P(A)P(B)-->A,B相互独立
A或B发生与C独立A发生且B发生与C独立A发生Bu发生与C独立相互独立就是2个事件的相关系数为O
篇幅有限,最后一步交叉乘过去化简就得到了.还有疑问欢迎追问.
事件A与事件~A构成概率空间若A与B相互独立,则事件B与A与事件~A构成概率空间之间独立故A的逆与B也相互独立
题目写错了吧,应该是设随机事件A,B相互对立,试证:A,B也相互独立.
因为A,B,C相互独立,所以P(ABC)=P(A)P(B)P(C)P(AB)=P(A)P(B)所以P(CAB)=P(ABC)=P(A)P(B)P(C)=P(AB)P(C)所以C与AB相互独立
设p(a)=x,p(b)=yp(非a)=1-x,p(非b)=1-y因为事件a,b相互独立,由题意则有:p(a)p(非b)=x(1-y)=x-xy=1/4p(b)p(非a)=y(1-x)=y=xy=1/