设三阶矩阵AB满足AB=A B证明A-E可逆并求A-E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:24:20
设三阶矩阵AB满足AB=A B证明A-E可逆并求A-E
设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.

设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.证:以下记单位矩阵(幺阵)为E.由已知得(A-bE)(B-aE)=abE0两边求行列式,均不为零,故det(A-bE)0,故A-

矩阵中AB=BA的条件

矩阵满足AB=BA,就称A,b是可交换的.除了特殊的几个结论外(如,A^2与A可交换),没有什么一般的条件.

线性代数:设A,B是满足AB=0的任意两个非零矩阵,则必有?

你这样想AB=0如果用矩阵方程的形式来写是什么样的呢应该是A的每一行乘以B的每一列等于0那么B的每一列就是AX=0的解而齐次方程的解系应该都是线性无关的所以B的列向量必然线性无关同理A的行向量也是线性

n阶矩阵AB满足A+2B=AB证明AB=BA

证明:由A+2B=AB得(A-2E)(B-E)=2E所以B-E可逆,且(B-E)^-1=(1/2)(A-2E).所以(B-E)(A-2E)=2E整理有BA=A+2B再由已知得AB=BA.

已知矩阵A,矩阵B满足AB=BA,求矩阵B

碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor

设非零矩阵A是m*s矩阵,B是s*n矩阵满足AB=0,则R(A)

不对.反例:A:ab00cd00B:00001234A:2×4矩阵,a,b,c,d任取.B:4×2矩阵,R(B)=2AB=0

已知矩阵A,B满足AB=BA,证明:A,B是同级方阵

设A,B分别是m*n和n*m矩阵,则AB是m级方阵,BA是n级方阵.所以m=n.

设N阶矩阵A,B满足条件A+B=AB 1证明A—E是可逆矩阵,并求其逆 2证明AB=BA

AB-B=A,(A-E)B-E=A-E,(A-E)(B-E)=E,所以A-E可逆逆矩阵为B-E由1知(A-E)和B-E互逆所以(B-E)(A-E)=E与(A-E)(B-E)=E,展开比较就可以得到AB

[ab]

不知道你是在什么题中遇见这个符号的.在线性代数中是矩阵的意思.

若s×n矩阵A和n×s矩阵B满足AB=0,则秩(A)+秩(B)≤n?

也是对的,看一下Sylvester不等式

线性代数矩阵证明若方阵A、B满足AB+BA=E,且A^2=0,求证(AB)^2=AB

(AB)^2-AB=ABAB-AB=A(BA-E)B=A(BA-AB-BA)B=-A^2B^2=0SO:(AB)^2=AB

设A,B为满足AB=0的任意两个非零矩阵,则必有(  )

方法一:设A为m×n矩阵,B 为n×s矩阵,则由AB=O知:r(A)+r(B)≤n,又A,B为非零矩阵,则:必有rank(A)>0,rank(B)>0,可见:rank(A)<n,rank(B

已知三阶矩阵A和B满足A+B=AB,求A

由A+B=AB,得(A-E)(B-E)=E所以A-E=(B-E)^-1=0-30200001的逆矩阵=01/20-1/300001所以A=11/20-1/310002

若n阶矩阵A,B满足条件AB-A+2E=0,则矩阵AB-BA+2A的秩为?

因为AB-A+2E=0所以A(B-E)=-2E所以A可逆,且(B-E)A=-2E所以BA-A+2E=0所以AB=BA所以r(AB-BA+2A)=r(2A)=n.

已经矩阵A=1 0/2 1,求,满足AB=BA的所有矩阵

设B=abcd由AB=BA得[a,b][a+2b,b][2a+c,2b+d]=[c+2d,d]所以有a=a+2b2a+c=c+2d2b+d=d解得:b=0,a=d所以,满足AB=BA的矩阵为:a0ca

矩阵AB=0 ,行列式AB=0

不是矩阵和行列式是两个概念行列式是值和代数式矩阵是数量关系表再问:为什么矩阵AB=0,可以推出A的行列式=0或者B的行列式=0再答:不对吧A=-11B=11AB=0但不可以推出A的行列式=0或者B的行

为什么矩阵A,B满足AB=0,且|A|≠0时必有B=0?

det(A)≠0意味着A非奇异,故可逆.用A^(-1)左乘AB=0两边可得B=0.

试证不存在n阶方阵A、B满足AB-BA=E(E为单位矩阵)

由矩阵迹的性质知tr(AB-BA)=tr(AB)-tr(BA)=0,而tr(E)=n,两者不可能相等

设三阶矩阵A(1,0,0,0,4,0,0 0 2),矩阵B满足AB=A+B,求矩阵B.

AB=A+B,所以:(A-E)B=A,E为单位矩阵(A-E)=(0,0,0,0,3,0,0,0,1)逆矩阵不存在,本题有错误

证明矩阵中 |AB|=|A|*|B|

证明方法:左边按公式展开!右边先用行列式公式计算,然后进行组合,会发现和左边对应相等.不过书写太麻烦了!