设三阶方阵A.B满足关系式A1BA=6A BA,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:44:55
设三阶方阵A.B满足关系式A1BA=6A BA,
方阵AB=BA方阵A和方阵B需要满足什么条件?

没有一般的充要条件.只是充分条件的话,貌似有一个是正交阵就可以?

已知矩阵A,B满足AB=BA,证明:A,B是同级方阵

设A,B分别是m*n和n*m矩阵,则AB是m级方阵,BA是n级方阵.所以m=n.

三阶方阵A,B,满足AB等于A+2B,证明B-E可逆.

证:AB=A+2BAB-A=2BA(B-E)=2B-2E+2EA(B-E)=2(B-E)+2E(A-2E)(B-E)=2E½(A-2E)·(B-E)=E所以B-E可逆,且其逆矩阵为½

.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.

A^2-3A=2EA*(A-3E)/2=E所以A可逆逆矩阵为A^(-1)=(A-3E)/2

证明:设方阵A满足关系式AA-2A-2E=0,证,A及A+2E均可逆,并求出逆矩阵.

由于A²-2A-2E=A(A-2E)-2E=0所以A(A-2E)=2EA(1/2)(A-2E)=E所以A可逆A逆为(1/2)(A-2E)而由于A²-2A-2E=(A-4E)(A+2

设A,B是n阶方阵,满足AB=A-B,证明AB=BA

AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA

线型代数(理)设n阶实方阵A,B,C满足关系式ABC=E,其中E为n阶单位矩阵,

4正确.ABC=E根据结合律,得A(BC)=E等式两边取行列式,得|ABC|=|E|=1因为|ABC|=|A(BC)|=|A|*|BC|=1所以|A|!=0所以A可逆.等式两边左乘A逆,右乘A,得A逆

已知四阶方阵且A=(a1,a2,a3,a4),其中a1,a2,a3,a4线性无关,且a1=2a2-a3,B=a1+a2+

a1=2a2-a3怎么会a1,a2,a3,a4线性无关?再问:额,错了,没a4再答:a1,a2,a3线性无关也不对呀a1=2a2-a3再问:看来我晕了头了,是a2a3a4无关,呵呵再答:a2,a3,a

设4阶方阵A通过列分块后为(a1,a2,a3,a4) b是一个4维列向量 且满足a1,a2无关 a1,a2,a3,a4相

由a1+a2+a3+a4=b知ξ=(1,1,1,1)^T是AX=b的解由a1+2a2-a3-a4=0,a4=2a1-a2知η1=(1,2,-1,-1)^T,η2=(2,-1,0,-1)^T是AX=0的

如果a、b满足关系式a+b=4a

已知等式a+b=4a+2b-5,整理得:a-4a+4+b-2b+1=(a-2)2+(b-1)2=0,可得a=4,b=1,则a+2b=4+2=6.

方阵A,B满足A+B=AB 证明A,B可交换,即AB=BA

A+B=AB,所以(A-E)(B-E)=E,E是单位矩阵所以,A-E与B-E互为逆矩阵,所以,E=(B-E)(A-E)=BA-A-B+E,得BA=A+B所以,AB=BA

已知A为n阶方阵,且满足关系式A^2+3A+4E=0,则(A+E)^-1=

显然由A^2+3A+4E=0可以得到(A+E)(A+2E)=-2E,即(A+E)(-A/2-E)=E,所以由逆矩阵的定义可以知道,(A+E)^-1=-A/2-E

设n阶方阵A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有(  )

由ABC=E,可知:A-1=BC,C-1=AB,∴A-1A=BCA=E,CC-1=CAB=E,故选:D.

已知四阶方阵A满足|A-E|=0,方阵B=A^3-3A^2,满足BB^T=2E,且|B|

已知矩阵M=2321,求矩阵M的特征值与特征向量.考点:特征值与特征向量的计算.专题:计算题.分析:先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的

已知△ABC三边a,b,c满足关系式.

先看式子分解因式(a-c)(a+c)+3b(a-c)=0(a-c)(a+c+3b)=0所以只可能a=c,a+c+3b肯定大于零所以就是等腰三角形再问:(a-c)(a+c+3b)=0这步没懂,是怎么回事

当a,b满足关系式( )时,分式2a-b/2a-3b有意义

2a-b/2a-3b(2a-3b)≠02a≠3b当a,b满足关系式(2a≠3b)时,分式2a-b/2a-3b有意义

设3阶方阵 A与B满足 (A^-1)B=2B+A^-1,求B

A^(-1)B-2B=A^(-1)(A^(-1)-2E)B=A^(-1)其中E是单位矩阵.因为A是对角阵,所以:A^(-1)=300040006A^(-1)-2E=100020004等式左侧的A^(-

设三阶方阵A=(A1,A2,A3),且|A|=3,则|A1-A2,A3,2A1|=______

|A1-A2,A3,2A1|=2|-A2+A1,A3,A1|[第3列提出公因子2]=2|-A2,A3,A1|[第3列乘-1加到第2列]=-2|A2,A3,A1|[第1列提出-1]=2|A2,A1,A3

已知:线段a、b、c满足关系式ab=bc

∵ab=bc,∴b2=ac=42=16.故答案是:16.