设三元非齐次线性方程组Ax=b的系数矩阵的秩为2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:18:38
AX=B有解的充要条件是r(A,B)=r(A)
必须无解.因为x的秩<b的秩.
不对,也可能无解但当有解时解唯一所以第4个选项正确
因为R(A)=3所以Ax=0的基础解系含4-3=1个向量所以2a1-(a1+a2)=(2,3,4,5)^T是Ax=0的基础解系所以Ax=b的通解为(1,2,3,4)^T+k(2,3,4,5)^T
这是线性代数啊,秩为3小于4说明方程的通解为齐次通解加上非齐次特解,其中Aa1=b,Aa2=b,Aa3=b,所以A(-a2-a3+2*a1)=0,及其次的通解为才c(-a2-a3+2*a1)T=c(2
D正确.若AX=b有解,则有无穷多解但也可能无解所以D正确
Ax=b有解r(A)=r(A,b)r=n时,方程组不一定有解r=m时,因为m=r(A)再问:为什么r(A,b)
未知数的个数多于方程的个数;比如三个未知数:X,Y,Z;两个方程:X+Y+Z=100X-Y+Z=1X=(101-2Z)/2Z任意Y=99/2无穷多组解用较专业一点的说法,非齐次线性方程组Ax=B有无穷
因为r(A)=2所以Ax=0的基础解系含n-r(A)=3-2=1个解向量因为2a1-(a2+a3)=(3,2,3)^T是Ax=0的非零解,故是基础解系所以方程组的通解为(2,1,2)^T+c(3,2,
若m>n则r(A)≤min(m,n)≤n若m=n则r(A)=n=m若m
因为(2,3,4,5)^T是Ax=0的非零解,线性无关基础解系又含一个向量那么这个非零解就是基础解系
由已知,AX=0的基础解系含3-r(A)=1个解向量所以Y2-Y1=(2,-1,5)^T是AX=0的基础解系所以AX=B的通解为(1,2,3)^T+c(2,-1,5)^T.搞定就采纳哈.
此线性方程组的通解为C(u1-u2)+u1.
k(a1-a2)+a1再问:(A)ka1;(B)ka2;(C)k(a1-a2);(D)k(a1+a2)这几个选项选c吗?再答:嗯
因为矩阵A的秩为1所以AX=0的基础解系的基数为2又X1,X2,X3是三个解向量所以X1-X2=列向量(2,-2,3)和X1-X3=(0,0,2)是AX=0的基础解系AX=β的解为通解加特解,它的解为
为什么要u2-u1不是u1-u2--都可以.基础解系本来就不是唯一的然后为什么u2-u1是AX=0的非零解--是解是由性质,非零是计算结果知道r小于n就是有非零解那是不是意思就是u1,u2是AX=0的
因为R(A)=1所以AX=0的基础解系含3-1=2个向量(a1+a2)-(a2+a3)=(1,3,2)^T(a1+a2)-(a1+a3)=(0,2,4)^T是AX=0的线性无关的解,故为基础解系(a1
错.设X与Y都是非齐次线性方程组AX=b的解有AX=b,Ay=b有x=y2x-3y=-y如A(-y)=0.由Ay=b则b=0而B的值不确定,故结论错误
通解是x=1/2(a1+a2)+k(a2-a3)=(1,0,2)'+k(1,1,1)',k是任意实数.---------'代表转置再问:为什么,可以讲的详细点么,谢谢啦再问:明天考试了,跪求再答:首先