设三元非齐次线性方程组AX=b中,距阵A的秩为2,且u1=(1,2,2)T,u2=(3,2,1)T是方程组的两个解,则此
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 20:40:29
设三元非齐次线性方程组AX=b中,距阵A的秩为2,且u1=(1,2,2)T,u2=(3,2,1)T是方程组的两个解,则此方程组的通解为( )n-r=3-2=1 所以Ax=0的基础解系中只有一个向量,u2-u1=(2,0,-1)T是Ax=0的非零解,是Ax=0的一个基础解系
所以Ax=b的通解可以表示为u1+k(u2-u1)=(1,2,2)T+k(2,0,-1)T,k是任意实数
问:为什么要u2-u1 不是u1-u2 然后为什么u2-u1是AX=0的非零解 知道r小于n就是有非零解 那是不是意思就是u1,u2是AX=0的非零解 那为什么u2-u1是
还有一道是因为α1,α2,α3是AX=b的解,所以α1-α2,α1-α3是AX=0的解(那反过来α3-α1或者α2-α3是不是)然后(α1-α2)+(α1-α3)=ζ 这两个加起来为什么就是他的基础解系啊 问题比较多这一章节学的不好 辛苦啦 感激不尽
所以Ax=b的通解可以表示为u1+k(u2-u1)=(1,2,2)T+k(2,0,-1)T,k是任意实数
问:为什么要u2-u1 不是u1-u2 然后为什么u2-u1是AX=0的非零解 知道r小于n就是有非零解 那是不是意思就是u1,u2是AX=0的非零解 那为什么u2-u1是
还有一道是因为α1,α2,α3是AX=b的解,所以α1-α2,α1-α3是AX=0的解(那反过来α3-α1或者α2-α3是不是)然后(α1-α2)+(α1-α3)=ζ 这两个加起来为什么就是他的基础解系啊 问题比较多这一章节学的不好 辛苦啦 感激不尽
为什么要u2-u1 不是u1-u2
-- 都可以.基础解系本来就不是唯一的
然后为什么u2-u1是AX=0的非零解
-- 是解是由性质,非零是计算结果
知道r小于n就是有非零解 那是不是意思就是u1,u2是AX=0的非零解 那为什么u2-u1是
-- u1,u2 是非齐次线性方程组的解,不是 Ax=0 的解
那反过来α3-α1或者α2-α3是不是
-- 是,这是方程组解的性质,看看相关结论吧
然后(α1-α2)+(α1-α3)=ζ 这两个加起来为什么就是他的基础解系啊
-- 1.必须说明基础解系含1个向量 2.这是导出组的解(性质) 3.结果非零
看来你对线性方程组解的基本性质不熟习.
简单的有:
1.齐次线性方程组解的线性组合仍是它的解
2.非齐次线性方程组解的差是其导出组的解
3.非齐次线性方程组的解与其导出组的解的和是非齐次线性方程组的解
延伸结论:
1.非齐次线性方程组的解的线性组合仍是它的解的充分必要条件是组合系数的和等于1.
2.非齐次线性方程组的解的线性组合是其导出组的解的充分必要条件是组合系数之和等于0.
再问: u2-u1=(2,0,-1)T是Ax=0的非零解,是Ax=0的一个基础解系 那下面一道α1-α2,α1-α3是AX=0的解(是不是也是基础解系)而为什么(α1-α2)+(α1-α3)=ζ 这两个加起来就是他的基础解系
再答: 唉 又要看半天 所以要一题一问 这个题你只给了一些结论, 原题是什么不清楚, 所以说非齐次线性方程组的差是导出组的解 若说是基础解系 1.必须说明基础解系含1个向量 2. 这是导出组的解(性质) 3. 结果非零 一题 一问, 给原题吧
再问: 额 那就看第一题 问简单一点吧 为什么U2-U1是基础解系 你说若说是基础解系 1.必须说明基础解系含1个向量 2. 这是导出组的解(性质) 3. 结果非零 2这是导出组的解是什么意思
再答: A(u1-u2) = Au1-Au2 = b - b = 0. 所以 u1-u2 是 Ax=0 的解. 2. 非齐次线性方程组解的差是其导出组的解
-- 都可以.基础解系本来就不是唯一的
然后为什么u2-u1是AX=0的非零解
-- 是解是由性质,非零是计算结果
知道r小于n就是有非零解 那是不是意思就是u1,u2是AX=0的非零解 那为什么u2-u1是
-- u1,u2 是非齐次线性方程组的解,不是 Ax=0 的解
那反过来α3-α1或者α2-α3是不是
-- 是,这是方程组解的性质,看看相关结论吧
然后(α1-α2)+(α1-α3)=ζ 这两个加起来为什么就是他的基础解系啊
-- 1.必须说明基础解系含1个向量 2.这是导出组的解(性质) 3.结果非零
看来你对线性方程组解的基本性质不熟习.
简单的有:
1.齐次线性方程组解的线性组合仍是它的解
2.非齐次线性方程组解的差是其导出组的解
3.非齐次线性方程组的解与其导出组的解的和是非齐次线性方程组的解
延伸结论:
1.非齐次线性方程组的解的线性组合仍是它的解的充分必要条件是组合系数的和等于1.
2.非齐次线性方程组的解的线性组合是其导出组的解的充分必要条件是组合系数之和等于0.
再问: u2-u1=(2,0,-1)T是Ax=0的非零解,是Ax=0的一个基础解系 那下面一道α1-α2,α1-α3是AX=0的解(是不是也是基础解系)而为什么(α1-α2)+(α1-α3)=ζ 这两个加起来就是他的基础解系
再答: 唉 又要看半天 所以要一题一问 这个题你只给了一些结论, 原题是什么不清楚, 所以说非齐次线性方程组的差是导出组的解 若说是基础解系 1.必须说明基础解系含1个向量 2. 这是导出组的解(性质) 3. 结果非零 一题 一问, 给原题吧
再问: 额 那就看第一题 问简单一点吧 为什么U2-U1是基础解系 你说若说是基础解系 1.必须说明基础解系含1个向量 2. 这是导出组的解(性质) 3. 结果非零 2这是导出组的解是什么意思
再答: A(u1-u2) = Au1-Au2 = b - b = 0. 所以 u1-u2 是 Ax=0 的解. 2. 非齐次线性方程组解的差是其导出组的解
设三元非齐次线性方程组AX=b中,距阵A的秩为2,且u1=(1,2,2)T,u2=(3,2,1)T是方程组的两个解,则此
设三元非齐次线性方程组Ax=b的两个解围u1=(2,0,3)^T,u2=(1,-1,2)^T,且系数矩阵的
高数,线性代数题求解设三元非齐次线性方程组Ax=b的两个解为u1=(2,0,3)T,u2=(1,-1,2)T,且系数矩阵
设a1 a2 a3是三元线性方程组AX=b的三个解,且秩为2,a1+a2=(2,0 ,4)t
设A为4×3的矩阵且秩为2,向量n1=(1 0 1)T,n2=(2 1 3)T是方程组Ax=B的两个解,求方程组Ax=B
设A的秩为2,a1,a2,a3是三元非齐次线性方程组Ax=b的三个解,若a1=(2,1,2)^T以及a2+a3=(1.0
设3元非齐次线性方程组Ax=b的两个解为α=(1,0,2)T,β=(1,-1,3)T,且系数矩阵A的秩r(A)=2,
设3元线性方程组AX=b,A的秩为2,n1,n2,n3为方程组的解,n1+n2=(2,4,0)^T,n1+n3=(1,-
设4阶矩阵A的秩为3,η1,η2为非齐次线性方程组Ax =b的两个不同的解,c为任意常数,则该方程组的通解为
已知三元非齐次线性方程组Ax=b的系数矩阵的秩为2,并且,α1,α2,α3,是其三个解向量,其中α1=(1.1.1)T,
设三元非其次线性方程组AX=B的系数矩阵的秩为2,YI,Y2是他的两个解向量,已知YI=(1,2,3),Y2=(3,1,
设A为n阶非零方阵,且A中各行元素都对应成比例,又β1,β2,……βt是齐次线性方程组Ax=0的基础解系,则t=