设∑为锥面z=√(x²+y²)在柱体
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:49:15
两个办法:一个是用积分,一个是用立体角①用积分用球面坐标,设半径r与z轴夹角为φ,r在XOY平面上投影与x轴夹角为θ则积分区域为:0≤r≤1,0≤φ≤π/4,0≤θ≤2π两曲面所围成立体体积为V=∫d
不需要那样做由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)√((dz/
用stokes公式最后求得是4π,因为输入不方便,所以建议你看同济的第三版《微积分》第217页例1,解法类似再问:就是看不太懂例题才想问问的,向量方向是怎么确定的?为什么是r=2cosθi2sinθj
对于z=F(X,Y),A=∫∫DDA=∫∫D√[1+(FX)2+(Fy)的表面积2]DXDY锥面Z=√(X2+Y2)是圆柱形表面X2+Y2=2倍的切削积分区域D为:0≤X≤2,-√(2X-X2)1,0
可以用曲面积分来求.因为曲面是锥面z=2√x^2+y^2的一部分.满足z'x=2x/√x^2+y^2,z'y=2y/√x^2+y^2设∑表示x^2+y^2=2x所围成的圆域,S∑表示这个圆的面积.所求
可以直接使用高斯公式:没问题的话麻烦采纳吧,/
再问:三重积分可以表示为体积?
f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(
补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-
用球坐标算:原式=∫[0,2π]dθ∫[0,π/4]dφ∫[0,2](sinφcosθ+sinφsinθ+cosφ)^2*ρ^4sinφdρ=32(2-√2)π/5
Gauss公式.∂P/∂x+∂Q/∂y+∂R/∂z=1+1+2z-2=2z∫∫Σxdydz+ydzdx+(z²-2z)
再问:我漏了平面的了。还有一道题!再答:说来看看,不过要确保那个曲面是有限的
∫∫∑e^z/√(x^2+y^2)dxdyə[e^z/√(x^2+y^2)]/əz=e^z/√(x^2+y^2)=∫∫∫Ωe^z/√(x^2+y^2)dxdydz=∫[0,2π]d
设M1(x1,y1,z1)为准线上的任意点,那么过M1的母线为:x/x1=y/y1/z/z1---(1)而且:x1^2/9-y1^2/4=1---(2)x1-y1-z1+6=0---(3)由(1),(
/>要求锥面z=√(x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影可以分开求锥面z=√(x^2+y^2)在xoz面的投影,和柱面z^2=2x在xoz面的投影,这两个投影重叠部分即为锥面z=
x^4(y-z)+y^4(z-x)+z^4(x-y)=xy(x^3-y^3)+yz(y^3-z^3)+zx(z^3-x^3)=xy(x^3-y^3)+yz(y^3-z^3)-zx[(x^3-y^3)+
被积函数是e^z/√(x^2+y^2)Gauss公式,三重积分用截面法Ω:1≤z≤2,x^2+y^2≤z^2I=∫∫∫e^z/√(x^2+y^2)dxdydz=∫e^zdz∫∫1/√(x^2+y^2)