设∑为球面x^2 y^2 z^2=R^2的外侧,∮∫zdxdy=2 3兀R^3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:19:55
这是第一类曲面积分,由于积分曲面关于三个坐标面均是对称的,而被积函数分别关于z,x,y是奇函数,因此本题结果为0再问:有过程么再答:没过程,直接写结果,分析过程已写给你了。
这题是一个第二类曲面积分的题目,把邮箱发给我,我给你发过去,我已经编辑成word格式了.看着比较舒服.
再问:还没学高斯系数额,就用第一类曲面积分算法可以吗再答:这就是第一类曲面积分的算法。请参照二重积分中,计算曲面面积的方法,其中就有高斯系数。再问:请问倒数第二部a^4怎么出来变a^3了再答:这种解法
x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²
∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5
用完Gauss公式后被积函数是3(x^2+y^2+z^2),3提到积分号外面,剩下的做球座标后是r^2.再问:==所以说为什么会有两个r^2?球坐标是r^2sinkθ哦再答:r^2是被积函数的,r^2
令P=xy²,Q=yz²,R=zx²∵αP/αx=y²,αQ/αy=z²,αR/αz=x²∴由高斯公式,得原式=∫∫∫(αP/αx+αQ/α
Jz=a∫(r,-r)(r^2-y^2)dy=4ar^3/3
区域Ω关于坐标面都对称,而被积函数中的x是奇函数所以积分值=0再问:区域Ω在第一卦象,忘了打进去了。所以答案不是零再答:再问:答案是πe(e^15-1)/16,我理解了。出错的地方在于的ψ取值范围为[
∵x²+y²+z²=1==>z=±√(1-x²-y²)令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y
面积元素ds=2/(4-x^2-y^2)^1/2dxdy∫∫(x^2+y^2+z^2)dS=x^2+y^2+z^2)dS=∫∫4.2/(4-x^2-y^2)^1/2dxdy极坐标换元:∫∫(x^2+y
不需要楼上那么麻烦啊,而且楼上也做错了首先积分曲面关于xoy面对称,对于-2z这个奇函数,积分结果为0.原式=∫∫(x^2+y^2+z^2)ds=∫∫1ds=4π1、第一类曲面积分可以用曲面方程化简被
根据球面的对称性,所以对关于x,y,z的奇函数的积分为0所以∫∫xdS=∫∫ydS=∫∫zdS=0所以原积分=∫∫(x+y+z+1)dS=∫∫dS=球面的表面积=4π
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).
流量是速度乘以面积嘛,所以把速度场沿球面积分就好啦
由积分曲线的方程可以看出表达式具有轮换对称性,因此∮xds=∮yds=∮zds,同理∮x^2ds=∮y^2ds=∮z^2ds,所以∮xds=(1/3)(∮(x+y+z)ds)=0,∮y^2ds=(1/
x^4(y-z)+y^4(z-x)+z^4(x-y)=xy(x^3-y^3)+yz(y^3-z^3)+zx(z^3-x^3)=xy(x^3-y^3)+yz(y^3-z^3)-zx[(x^3-y^3)+
Σ分为两部分Σ1:z=a+√(a^2-x^2-y^2)与Σ2:z=a-√(a^2-x^2-y^2).Σ1与Σ2在xoy面上的投影区域都是D:x^2+y^2≤a^2.Σ1与Σ2上,dS=a/√(a^2-