设α,β,γ是三维列向量,

来源:学生作业帮助网 编辑:作业帮 时间:2024/09/24 21:24:30
设α,β,γ是三维列向量,
设A是m×n矩阵,且r(A)=1,则存在m维列向量α与n维列向量β,使得A=α×(β的转置)

既然A是秩为1的mxn矩阵,则存在可逆矩阵P,Q使得A=PA'Q其中A'为A的标准型,就是只有最左上角为1,其他都为0的矩阵则PA'只有第一列为非0,A‘Q只有第一行为0,取a为PA'的第一列,b为A

线性代数 正交的运用“因为α,β均为三维列向量,故存在非零列向量x与α,β均正交”这句话的依据是什么?

关于正交,只要记住一句话,“正交”就是“内积为0”.两个表述是一样的,可以互相替换.本题换一个表述:因为α,β均为三维列向量,故存在非零列向量x,使得x与α的内积,x与β的内积都是0.即==0对这句话

设A是3阶矩阵,a1a2a3是三维线性无关的列向量,且Aa1=4a1-4a2+3a3 Aa2=负6a1-a2+a3 Aa

改写为A(a1a2a3)=(a1a2a3)B的形式,矩阵A,B有相同的特征值

若α为三维列向量,E为三阶矩阵,求E-αα^T的秩

设A=E-αα^T,则Aα=(E-αα^T)*α=α-αα^T*α=α-α(α^T*α),设α=(a,b,c)^T,则α^T*α=a^2+b^2+c^2,Aα=(1-a^2-b^2-c^2)α,A-E

A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3 ,Aα2=2α2+α3

把条件写成A[α1,α2,α3]=[α1,α2,α3]B,其中B=100122113再把B对角化即可

设A为三阶矩阵,三维列向量a1,a2,a3线性无关,

A(a1,a2,a3)=(a1,a2,a3)KK=10201222-1所以|A||a1,a2,a3|=|a1,a2,a3||K|.由a1,a2,a3线性无关,所以|a1,a2,a3|≠0.所以|A|=

设三阶矩阵A=(α,2γ1,3γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2均为三维列向量,|A|=15,|B|

是A的行列式为18吧?易得|a,r1,r2|=3|A-B|=|a-b,r1,2r2|=2|a-b,r1,r2|=2(|a,r1,r2|-|b,r1,r2|)=2(3-2)=2

设矩阵B的列向量线性无关,BA=C,证明矩阵C的列向量线性无关的充要条件是A的列向量线性无关.

先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1

设A=[a1,a2,a3],其中ai(i=1,2,3)是三维列向量,若|A|=1,则|[4a1,2a1-3a2,a3]=

|4a1,2a1-3a2,a3|=|4a1,2a1,a3|-|4a1,3a2,a3|【第一个行列式有两行成比例,所以行列式为0】=0-|4a1,3a2,a3|=-4×3|a1,a2,a3|=-12|A

设A为3阶矩阵,α1,α2,α3为三维列向量组,秩(α1,α2,α3)

(Aα1,Aα2,Aα3)=A﹙(α1,α2,α3)秩(Aα1,Aα2,Aα3)=秩[A﹙(α1,α2,α3)]≤秩(α1,α2,α3)

线性代数题,设A=E+αβ^T,其中α、β均为列向量.

需要明白秩为1的矩阵的特征值是啥!显然题目中的αβ^T是一个秩为1的矩阵所以其特征为3,0,.0(n-1个0)那么A的特征值为4,1,.1(n-1个1)那么A+2E的特征值为6,3,.3(n-1个3)

设α使n维列向量,A是n阶正交矩阵,则||Aα||=||α||

因为A是n阶正交矩阵,所以A'A=E||Aα||=√(Aα,Aα)=√(Aα)'(Aα)=√α'A'Aα=√α'Eα=√α'α=||α||

线性代数向量的题.设α1.α2.β1.β2,是三维列向量,A=(α1.α2.β1).B=(α1.β2.α2).矩阵A的行

∵|B|=|α1β2α2|=2∴|α1α2β2|=-2∵|A|=|α1α2β1|=5∴|C|=|2α14α2-3α1β1+β2|=2|α14α2-3α1β1+β2|=2|α14α2β1+β2|=8|α

两个三维列向量,为什么一定存在非零列向量和这两个列向量都正交?

在三维空间中,两个不平行向量(无关向量)可决定一个平面.平面的法向量垂直于平面,故而法向量也一定垂直于(正交)决定平面的两个不平行向量(无关向量).而且,平面的法向量一定是非零向量.

若a为三维列向量,设aT为a的转置,为什么秩r(aaT)

aa^T的每一列都可以用a表示,秩当然不超过1

关于线性代数的问题已知α1,α2,β1,β2,γ,都是三维列向量,且行列式|α1,β1,γ|=|α1,β2,γ|=|α2

请看下面的计算再问:这两个是分别拆开吗?我解的时候是一次全拆开的 即|-2γ,α1+α2,β1+2β2|=|-2γ,α1,β1|+|-2γ,α2,2β2| 我是这样拆开的