设z=x³f(xy,y x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:12:28
xy+xz=8-x²yx+yz=12-y²zy+zx=-4-z²x(x+y+z)=8y(x+y+z)=12z(x+y+z)=-4(x+y+z)²=8+12-4=
设u=xy,v=lnx+g(xy),则x(∂z/∂x)-y(∂z/∂y)=∂f/∂v.原因如下:dz=(∂f/
由于x-y=a,z-y=10得x-z=a-10并且由x²+y²+z²-xy-yx-zx=1/2[(x-y)²+(y-z)²+(z-x)²]=
对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/
先求一阶导数,由于f有两个分量,要先对f的两个分量求导,再根据复合函数求导,两个分量对x求导,也就是z对x的一阶导数是:f1*y-f2*y/x^2,接下来再让这个式子对x求导,注意,这里利用乘法的导数
题好像不太对啊,第二个式子貌似不对.初中生?给的49,36,25,我觉得应该是X^2+2xy+Y^2=49,这样的话(x+y)^2=49,x+y=7,同理y+z=6,x+z=5,三个式子相加得2(+y
令G(X,Y,Z)=F(xy,z-2x)GZ'=F'2GX'=yF'1-2F'2∂z/∂x=-GX'/GZ'=(2F'2-yF'1)/F'2Gy'=xF'1∂z/&
x=6-3y &nbs
令u=xy,v=x+yz=f(u,v)az/ax=y(fu)+(fv)a^2z/axay=a(az/ax)/ay=a(y(fu)+(fv))/ay=(fu)+y(a(fu)/ay)+a(fv)/ay=
∵z=f(x,xy),令u=x,v=xy∴∂z∂x=f′1+yf′2∴∂2z∂x∂y=∂∂y(f′1+yf′2)=∂f′1∂y+∂∂y(yf′2)═(∂f′1∂u∂u∂y+∂f′1∂v∂v∂y)+f′
设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1
你想说这个问题?z=e^(x^2+2xy)应该是y=e^(x^2+2xy)(2x+2y)i+e^(x^2+2xy)2xj
设u=xy,v=y/x,则z=x³f(u,v),au/ax=y,av/ax=-y/x²故az/ax=3x²f(u,v)+x³f'u(u,v)(au/ax)+x&
xy+yx=10x+y+10y+x=11x+11y=100+x10x=100-11yx=10-1.1y所以y只能是0
令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)
XY=XZ+YX?那么也就是XY=X(Z+Y)咯,Y=Z+Y?无法证明的.题抄错啦~`
u=x^2+y∂u/∂x=2x∂u/∂y=1du=(∂u/∂x)dx+(∂u/∂y)dy=2xdx+dy
即(10x+y)*(10y+x)=2268101xy+10x²+10y²=2268因为后面的10x²+10y²只可能是整十的数,所以2268中的个位8要靠101