设z=uv,u=2x y,v=5x-2y,求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:14:43
∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/
UV=acXY+adX+bcY+bdE(UV)=acE(XY)+adEX+bcEY+bdEU=aEX+bEV=cEY+dEU*EV=acEXEY+adEX+bcEY+bd因此两式相减得E(UV)=EU
z=(x+y)^2*cos(x^2*y^2)dz/dx=2*(x+y)*cos(x^2*y^2)-2*(x+y)^2*sin(x^2*y^2)*x*y^2dz/dy=2*(x+y)*cos(x^2*y
∵z=f(x,xy),令u=x,v=xy∴∂z∂x=f′1+yf′2∴∂2z∂x∂y=∂∂y(f′1+yf′2)=∂f′1∂y+∂∂y(yf′2)═(∂f′1∂u∂u∂y+∂f′1∂v∂v∂y)+f′
z=f(x,u),u=xy,求z对x的二阶偏导数∂z/∂x=∂f/∂x+(∂f/∂u)(∂u/∂x)=&
有些条件是多余的.由z-y²=u⁴,z+y²=v⁴相加得z=(u⁴+v⁴)/2≥u²v²(均值不等式).由v>u
其实很简单,只不过是一种运算的方法(可以跟a(bc)=abac类比).y=uv,y再问:什么
将e^(u+v)=uv两边对u求导得: e^(u+v)*(1+v')=v+u*v' 解得v'=(v-e^(u+v))/(e^(u+v)-u) 即dv/du=(v-e^(u+v))/(e^(u+v
其实就是求z的导数,cost^2求导为2cost*(-sint),t^6求导是6t^5,cost*t^3求导是-sint*t^3+cost*3*t^2,综合起来就是2cost*(-sint)+6t^5
∫∫f(u,v)dudv是一个数,记为A,则f(x,y)=xy+A,两边在D上作二重积分,得∫∫f(x,y)dxdy=∫∫xydxdy+A∫∫dxdy即A=∫∫xydxdy+AσA=∫xdx∫ydy+
dy/dx=dy/du*du/dx+dy/dv*dv/dx=v*e^(x+y)+u*y/x=ln(xy)*e^(x+y)+e^(x+y)*y/x=e^(x+y)[ln(xy)+y/x]所以dy=e^(
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系
说明:eu应该是e的x次幂,dz/dx,dz/dy应该是偏导数.∵v=xy,u=x2-y2∴du/dx=2x,du/dy=-2y,dv/dx=y,dv/dy=x∵z=ln(e^u+v),∴dz/dx=
dz/dx是z对x的偏导,这样把u,v都带入的话直接球偏导就好了dz/dx=y*e^(xy)*sin(x+y)+e^(xy)*cos(x+y)同理也可得到dz/dy=x*e^(xy)*sin(x+y)
①偏z/偏x=偏z/偏u偏u/偏x+偏z/偏v偏v/偏x=(2uv-v^2)siny+(2uv-v^2)cosy=(2x^2sinycosy-x^2(cosy)^2)siny+(2x^2sinycos
f(x)=u(x)v(x)f(x+△x)-f(x)=u(x+△x)v(x+△x)-u(x)v(x)=u(x+△x)v(x+△x)-u(x)v(x+△x)+u(x)v(x+△x)-u(x)v(x)=[u
z=u²v+3uv^4,u=e^x,v=sinx,求dz/dxdz/dx=2uu'v+u^2v'+3u'v^4+3v(4v^3)v'=2e^(2x)sinx+e^(2x)cosx+3e^x(