设z=sin(2xy),求dz

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:25:45
设z=sin(2xy),求dz
高数题,设z=x^2+xy+y^2,则dz=

dz=2x+y就是对z求x的导数吧

设方程xz+yz+xy=e的定函数z=z(x,y),求dz

两边同时微分zdx+xdz+zdy+ydz+xdy+ydx=0(x+y)dz+(y+z)dx+(z+x)dy=0dz=-[(y+z)dx+(z+x)dy]/(x+y)

设z=z(x,y)是由方程e^(-xy)+2z-e^z=2确定 求dz|(x=2,y=-1/2)

对方程e^(-xy)+2z-e^z=2两边微分,有:e^(-xy)*d(-xy)+2*dz-e^z*dz=0-e^(-xy)*(x*dy+y*dx)+2*dz-e^z*dz=0移项,得:(e^z-2)

全微分精通者帮忙!设z=z(x,y)由方程e的z次方-xy的2次方+sin(y+z)=0确定,求dz

(y^2+2xy-cos(y+z))/(e^z+cos(y+z))再问:没有过程吗?再答:求导:e^z*dz-y^2-2xy+cos(y+z)(1+dz)=0把含有dz的项移到一起:(e^z+cos(

设z=u^2cosv^2,u=x+y,v=xy,求dz/dx,dz/dy.

z=(x+y)^2*cos(x^2*y^2)dz/dx=2*(x+y)*cos(x^2*y^2)-2*(x+y)^2*sin(x^2*y^2)*x*y^2dz/dy=2*(x+y)*cos(x^2*y

设函数z=f(x,y)由方程e^z=xyz+cos(xy)求dz/dx ,dz/dy.求详解

因为x、y都为自变量,不是宗量,故此题没有全微分,应只有偏微分.详解如下:对方程两边微分:左边:de^z=e^z*dz右边d[xyz+cos(xy)]=xydz+yzdx+xzdy-(sinxy)*(

设z=arctan(xy),y=e的x次方,求dz/dx

z=arctan(x*e^x)z'={1/[1+(x*e^x)^2]}*(x*e^x)'(x*e^x)'=x'*e^x+x*(e^x)'=e^x+x*e^x=(x+1)*e^x所以dz/dx=(x+1

设二元函数z=sin(x-y),求αz/αy,αy/αz,dz

∂z/∂x=cos(x-y)∂z/∂y=-cos(x-y)dz=∂z/∂x*dx+∂z/∂y*dy=co

.设z=z(x,y)由方程sin z=xyz所确定的隐函数,求dz.

先对x求偏导数得z'(x)cosz=yz+z'(x)y所以z'(x)=yz/(cosz-y)同理对y求偏导数得z'(y)=xz/(cosz-x)所以dz=yz/(cosz-y)dx+xz/(cosz-

设z=ln(x^z×y^x),求dz

z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz

设函数z=xyln(xy),求全微分dz

dz=[yIn(xy)+y]dx+[xIn(xy)+x]dy分开求导

设函数Z=sin(x^2+y^2),则全微分dz=?

dz=Z'xdx+Z'ydy=2xcos(x^2+y^2)dx+2ycos(x^2+y^2)dy

设函数Z=sin(x^2 y^2),则全微分dz=?

再问:啊不好意思搞错了。。是z=e^(x^2+y^2),求dz,谢谢你帮我解答一下吧。。再答:

设z=ln(eu+v),v=xy,u=x2-y2,求dz/dx,dz/dy.

说明:eu应该是e的x次幂,dz/dx,dz/dy应该是偏导数.∵v=xy,u=x2-y2∴du/dx=2x,du/dy=-2y,dv/dx=y,dv/dy=x∵z=ln(e^u+v),∴dz/dx=

设z=arctany/x,求dz?

是(arctany)/x还是arctan(y/x)?如果是z=(arctany)/x,则∂z/∂x=-(arctany)/x²∂z/∂y=1/

设函数z=sin(x^2y^2)+3x-5y^2+1,求dz

z=sin(x²y²)+3x-5y²+1所以δz/δx=cos(x²y²)*2xy²+3δz/δy=cos(x²y²)*

设Z=f(x^2 +y,2xy),求dz/dx和dz/dy

u=x^2+y∂u/∂x=2x∂u/∂y=1du=(∂u/∂x)dx+(∂u/∂y)dy=2xdx+dy

设Z=x²+2xy,求dz

z=x^2+2xy两边同时求导数,得到:dz=2xdx+2ydx+2xdy即:dz=2(x+y)dx+2xdy.