设z=f(u,v),u=e^xy,v=x^2-y^2,求微分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:34:50
设z=f(u,v),u=e^xy,v=x^2-y^2,求微分
设函数z=f(u,v)具有二阶连续偏导数,z=f(x-y,y/x),求a^2z/axay

令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a

z=f(x/y,y/x),其中f(u,v)关于u,v具有连续偏导数,求 偏导 z/x 偏导 z/y?

令u=x/y,v=y/x,偏导z/x=fu(u,v)du/dx+fv(u,v)dv/dx=fu(u,v)1/y-fv(u,v)y/x^2偏导z/y=fu(u,v)du/dy+fv(u,v)dv/dy=

设z = f(u,v),而u=x+y,v=xy,其中f具有一阶连续偏导数,则∂z/∂x

∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/&#

设函数z=z(x,y)是由方程F(x-z,y-z)所确定的隐函数,其中F(u,v)具有一阶连续偏导数,求z(下标x)+z

z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x

设x=u.e^u,u^2+v^2=1,求dv/dx;求详解

x=ue^u两边微分:dx=e^udu+ue^udu=[(1+u)e^u]dudu/dx=1/[(1+u)e^u]u^2+v^2=1两边微分:2udu+2vdv=0dv/du=-u/vdv/dx=(d

多元函数微分 隐函数 函数z=z(x,u)由方程组x=f(u,v),y=g(u,v),z=h(u,v)所确定,求z对x的

偏z/偏x=(偏z/偏f)*f'x=偏z/偏f*1=偏z/偏f;偏z/偏u=(偏z/偏f)*(偏f/偏u)+偏g/偏u+偏h/偏u.

设f(u,v)具有二阶连续偏导数,z=f(e^xsiny,x^2+y^2). 计算δ^2z/δx^2 (δ为偏导数符号)

令e^xsiny=u,x^2+y^2=v则δz/δx=δf/δu*δu/δx+δf/δv*δv/δx=δf/δu*(e^xsiny)+δf/δv*(2x)δ^2z/δx^2=δ^2f/δu^2*(e^

设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则∂

∵z=f(x,xy),令u=x,v=xy∴∂z∂x=f′1+yf′2∴∂2z∂x∂y=∂∂y(f′1+yf′2)=∂f′1∂y+∂∂y(yf′2)═(∂f′1∂u∂u∂y+∂f′1∂v∂v∂y)+f′

设函数f(z)=u(x,y)+v(x,y)在区域D内解析,证明u(x,y)也是区域D内的解析函数

令v(x,y)=0不就行了么、、、或者u(x,y)在每处的偏导数都存在

z=f(u,v)=u^2-v^2,u=x+y,v=xy.求z对x的偏导.

z=f(x,u),u=xy,求z对x的二阶偏导数∂z/∂x=∂f/∂x+(∂f/∂u)(∂u/∂x)=&

设f(x,y)=xy+f(u,v)dudv,

∫∫f(u,v)dudv是一个数,记为A,则f(x,y)=xy+A,两边在D上作二重积分,得∫∫f(x,y)dxdy=∫∫xydxdy+A∫∫dxdy即A=∫∫xydxdy+AσA=∫xdx∫ydy+

设z=uv,u=e^(x+y),v=ln(xy)求dy

dy/dx=dy/du*du/dx+dy/dv*dv/dx=v*e^(x+y)+u*y/x=ln(xy)*e^(x+y)+e^(x+y)*y/x=e^(x+y)[ln(xy)+y/x]所以dy=e^(

设f(z)=u(x,y)+iv(x,y)为z=x+iy的解析函数 已知 u(x,y)-v(x,y)=x+y 求f(z)

设f(z)=u+iv为解析函数,则由∂v/∂x=-∂u/∂y=-x+2y;∂v/∂y=∂u/∂x=2x+

偏导数 .急 设z=(e^u)sinv 而u=xy ,v=x+y 求 dz/dx,dz/dy

dz/dx是z对x的偏导,这样把u,v都带入的话直接球偏导就好了dz/dx=y*e^(xy)*sin(x+y)+e^(xy)*cos(x+y)同理也可得到dz/dy=x*e^(xy)*sin(x+y)

设函数z=f(u) u=x^2+y^2 且f(u)二阶可导 则∂^2*z/∂x^2=?

由链式法则知道:再问:就你懂我是什么意思了!!激动地哭死!!但是答案错了。。答案4xyf“(u)再答:怎么求偏导都不会有xy这一项,因为(x^2+y^2)对x求偏导,y就消失了,除非你求混合导就是这个

设z=ln(u平方+v),u=x-y平方,v=x平方y,求 偏导z/x 偏导 z/y?

∂z/∂x=∂z/∂u*du/dx+∂z/∂v*dv/dx=1/(u^2+v)*2u+1/(u^2+v)*2xy∂z

设z=x+iy,解析函数f(z)的虚部为v=y3-3x2y,则f(z)的实部u可取为( )

由柯西-黎曼条件v'(x)=-u'(y),v'(y)=u'(x)得u'(y)=-6xy,u'(x)=3y²-3x²因而选择B