设Z=arctanx y 1-xy 求dz
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:47:44
第一个:z=x^xy=e^[ln(x^xy)]=e^(xylnx)令u=xy*lnx,则z=e^u∂z/∂x=(x^u)'•u'=(e^u)•(xyln
第一个无过程,就是考察t分布的定义,这里结果是t(5);第二个也可以说是无过程,考察的是二项分布的数字特征及矩估计方法(替换原理)这两个常识.对于X服从B(n,p)来说,其期望为EX=np,方差为DX
可以使用全微分公式求解,对方程分别对x,y求偏导,可得:偏Z偏X=1/(e^yz-1);偏Z偏Y=[z(e^yz)-z-x]/[y-y(e^yz)];dz=(偏z偏x)dx+(偏z偏y)dy;电脑不好
设u=xy,v=lnx+g(xy),则x(∂z/∂x)-y(∂z/∂y)=∂f/∂v.原因如下:dz=(∂f/
e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(
两边同时微分zdx+xdz+zdy+ydz+xdy+ydx=0(x+y)dz+(y+z)dx+(z+x)dy=0dz=-[(y+z)dx+(z+x)dy]/(x+y)
对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
对方程e^(-xy)+2z-e^z=2两边微分,有:e^(-xy)*d(-xy)+2*dz-e^z*dz=0-e^(-xy)*(x*dy+y*dx)+2*dz-e^z*dz=0移项,得:(e^z-2)
A*B的元素有1*0=01*2=22*0=02*2=4即有3个元素:0,2,4则所有元素之和为6
令u=xy,v=x+yz=f(u,v)az/ax=y(fu)+(fv)a^2z/axay=a(az/ax)/ay=a(y(fu)+(fv))/ay=(fu)+y(a(fu)/ay)+a(fv)/ay=
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1
求采纳哦!=27下面设 x-y=a;z-x=b;则z-y=a+b 所以有 a^2+b^2+(a+b)^2=54 又有 a^2+
∵x+y=z-1,xy=z²-7z+14.由韦达定理可知,x,y是关于a的一元二次方程a²-(z-1)a+(z²-7z+14)=0的两个实数根.故△=(z-1)²
点击放大,右键查看图片可以进一步放大:
∵xy+z=(x+z)(y+z),∴z=(x+y+z)z∴x+y+z=1故xyz≤[13(X+Y+Z)]3=127当且仅当 x=y=z=13取等号即xyz的最大值是127;
dz=[yIn(xy)+y]dx+[xIn(xy)+x]dy分开求导
z=x^2+2xy两边同时求导数,得到:dz=2xdx+2ydx+2xdy即:dz=2(x+y)dx+2xdy.