设z=(u,v),具有一阶连续的偏导数,且uv是由方程组x=e∧ucosv

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:19:35
设z=(u,v),具有一阶连续的偏导数,且uv是由方程组x=e∧ucosv
高数~求切平面方程设函数F(u,v)具有一阶偏导数,且FU(0,1)=2 FV(0,1)=-3,则曲面方程F(X-Y+Z

设G(x,y,z)=F(x-y+z,xy-yz+zx)求偏导数:Gx=Fu*1+Fv*(y+z),Gy=Fu*(-1)+Fv*(x-z),Gz=Fu*1+Fv*(x-y)代入x=2,y=1,z=-1,

高数 设函数u=u(x),v=(v)具有连续导数是啥意思

连续导数的意思就是首先这两个函数可导,并且这两个函数的导函数是连续的这是一个非常重要的条件,很多的定理都要求这样的条件的(印象中好像好多个中值定理是要求的)u=u(x).v=v(x),仅仅代表这是两个

设函数z=f(u,v)具有二阶连续偏导数,z=f(x-y,y/x),求a^2z/axay

令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a

z=f(x/y,y/x),其中f(u,v)关于u,v具有连续偏导数,求 偏导 z/x 偏导 z/y?

令u=x/y,v=y/x,偏导z/x=fu(u,v)du/dx+fv(u,v)dv/dx=fu(u,v)1/y-fv(u,v)y/x^2偏导z/y=fu(u,v)du/dy+fv(u,v)dv/dy=

设u=f(x,y,z),φ(x²,e∧y,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数且∂

u=f(x,y,z),y=sinxdu=əf/əx*dx+əf/əy*dy+əf/əz*dzdu/dx=əf/əx+&#

设f(x,y)具有一阶连续偏导数,z=xf(x^y,e^xy),求dz

根据一阶全微分形式不变得dz=d(xf(x^y,e^xy)=f(x^y,e^xy)dx+xd(f(x^y,e^xy))=f(x^y,e^xy)dx+x[f1'd(x^y)+f2'(de^xy)]=f(

设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ∂z≠0

∵u=f(x,y,z),y是x的函数,z也是x的函数∴dudx=∂f∂x+∂f∂y+∂f∂z•dzdx∵y=sinx∴dydx=cosx再在方程φ(x2,ey,z)=0两端对x求导,可得φ′1•2x+

设z = f(u,v),而u=x+y,v=xy,其中f具有一阶连续偏导数,则∂z/∂x

∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/&#

设函数z=z(x,y)是由方程F(x-z,y-z)所确定的隐函数,其中F(u,v)具有一阶连续偏导数,求z(下标x)+z

z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x

设f具有一阶连续偏导数,求u = f(xy,x+y)的偏导数∂u/∂x,∂u/

这是比较简单的求导了,你看一下书,在高数的下册把,多元函数求导中,我给你插图可能看不清,我也不知道怎么弄.下面那个人的解法不对,要是看不清我的插图就看看书就行了.

设z=f(x^2+y^2,xy),其中f具有一阶连续偏导数,求z的偏导数

令u=x^2+y^2,v=xy得∂z/∂x=(∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂

设z=z(x,y)由方程F(x+y,x+z)=z确定,其中F具有一阶连续偏导数,求dz

再问:其实我高数特白痴不明白~~~再答:哎,那你就抄下去,好好多看看吧再问:嗯嗯嗯谢谢你再问:F1是不是对x的偏导?再答:顺手采纳一下吧再问:但答案上最后是F'2dy再答:你的题目再检查一遍,是不是原

设函数u=f(x,y,z)具有连续偏导数

∂w/∂x=f‘1+yz·f’2(f‘1表示对f的第一个变量求偏导,1在下标其余类似)f具有二阶连续偏导数,∂²w/∂x∂z=&#

设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则∂

∵z=f(x,xy),令u=x,v=xy∴∂z∂x=f′1+yf′2∴∂2z∂x∂y=∂∂y(f′1+yf′2)=∂f′1∂y+∂∂y(yf′2)═(∂f′1∂u∂u∂y+∂f′1∂v∂v∂y)+f′

设函数u=f(x,y,z)具有连续的一阶偏导数,其中z=z(x,y)由可微函数y=φ(x,t)及t=ψ(x,z)确定,且

第一种理解法:本题要分清各变量的关系,由题意可知,u是函数,t是中间变量,x与y是自变量.因此x与y之间无函数关系,所以∂y/∂x=0.第二种理解法:对x求偏导时另一个自变量y

设z=xyf(x+y,e^x siny),其中f具有一阶连续偏导数,求Zx,Zy

偏Z比偏Y=xf(x+y,e^xsiny)+xy(f1'+f2'e^xcosy),偏Z比偏x=z=yf(x+y,e^xsiny)+xy(f1'+f2'e^xsiny).