设X和Y相互独立,分布密度分别为,求E(XY)和D(X Y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:56:09
设X和Y相互独立,分布密度分别为,求E(XY)和D(X Y)
设两个随机变量X和Y相互独立且分别服从参数为a1,a2的泊松分布,则X+Y服从参数为什么的泊松分布?

X+Y服从参数为(a1+a2)的泊松分布,因为泊松分布具有可加性,证明见参考资料

设随机变量X,Y相互独立,它们的概率密度分别为:

可以利用指数分布的特征,得到D(X)=1/4从原始理论推导的话,D(X)算起来有些麻烦E(X)=∫(0~无穷)x2e^(-2x)dx=1/2E(Y)=∫(0~1/4)4xdx=2x²](0~

设随机变量X与Y相互独立,且服从(0,2)上的均匀分布,求Z=|X-Y|的分布函数和概率密度

因为随机变量X与Y相互独立,且服从(0,2)上的均匀分布,则x-y区间为(-2,2),从而Z=|X-Y|服从(0,2)上的均匀分布,根据若r.v.ξ服从[a,b]上均匀分布,其分布密度为P(x)=1/

求解一道关于分布律的题目 设X和Y是两个相互独立的随机变量

P(Z=0)=P(X=0){P(Y=0)+P(Y=-1)}=0.3P(Z=1)=1-P(Z=0)=0.7如有意见,欢迎讨论,共同学习;如有帮助,

设随机变量X和Y相互独立,它们的概率密度分别为fx(X),fy(y),则(X,Y)的概率密度为

D.fx(x)fy(y)再问:能不能解释一下?再答:随机变量X和Y相互独立

概率论题目:设X,Y 相互独立,X 和Y 的分布律分别为P(X=0)=0.3,P(X=1)=0.7和P(Y=0)=0.3

选D事件X=Y有两种可能X=Y=0或X=Y=1他们的概率分别是0.3×0.3=0.9和0.7×0.7=0.49所以P{X=Y}=0.9+0.49=0.58

设随机变量X ,Y分别服从(0-1)分布,证明:X,Y相互独立等价于X,Y不相关

设X,Y的分布律分别为X01Y011-pp1-qq(1)X,Y独立,那么他们一定不相关(这是书上的结论,只要独立就一定不相关)(2)X,Y不相关,则COV(X,Y)=0,即E(XY)=E(X)E(Y)

设随机变量X和Y相互独立,且服从同一分布,证明P(X小于等于Y)=1/2

X,Y互相独立设X的密度函数为f(x),Y的密度函数为f(y)它们的联合密度函数为f(x,y)=f(x)f(y)f(y,x)=f(y)f(x)=f(x,y)f(x,y)关于y=x对称P(X

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量X和Y相互独立,其概率分布分别为: 如图

(1)X-11Y-11/41/411/41/4(2)P(X>Y)=P(X=1,Y=-1)=1/4

设随机变量X与Y相互独立其概率密度分别为 Px(x)={2x,0

因为随机变量X与Y相互独立所以X和Y的联合概率密度P(x,y)=Px(x)Py(y)P(x,y)={2xe^(-y)范围是0

相互独立的连续型随机变量X和Y的密度函数分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则下列正确的

A错f1+f2必然求全空间积分后为2,不满足归一性B错因为x取正无穷,值就成了2D错比如f1(x)=1x∈[0,1]f2(x)=0其它与f1(x)=1x∈[2,3]f2(x)=0其它两个乘各分0,积分

设随机变量X,Y相互独立,且均服从N(0,0.5)分布,则Z=X-Y的概率密度为fZ(z)=

是标准正态分布.经济数学团队帮你解答.请及时评价.

设X与Y相互独立分布,其共同概率密度函数为f(x)=x/4*e^(-x^2/8),x>=0;0,x

见以下两图. 以下你会的.再问:其实我就是求分布函数的时候及份额不会求。。然后分布函数求不对。。再答:不用分部积分.f(x)=(x/4)e^(-x²/8),x>0.F(x)=∫[0

多维随机变量分布问题设X,Y相互独立,(0,1)Y~(0,1)则Z=X+Y的概率密度f(Z)等于?

两个正态分布的和分布(不依概率1等于常数的话)一定是正态分布.EZ=E(X+Y)=EX+EY=0DZ=D(X+Y)=DX+DY=2故Z~N(0,2)f(z)=1/(2√π)e^(-z^2/4)

设随机变量X与Y相互独立,且其概率密度分别为

fx(x)=(1)2x0<x<1\x0d(2)0其他\x0dfy(y)=(1)e的-y次方y0\x0d(2)0y≤0,\x0d则X与Y的联合概率密度f(x,y)=\x0de的-y次方打不出