设x和y是两个相互独立,且具有相同的分布,它们的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:10:54
设x和y是两个相互独立,且具有相同的分布,它们的概率密度
设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X-2Y的方差是(  )

解,由题意知X和Y独立,且D(X)=4,D(Y)=9,由方差公式知:D(3X-2Y)=9D(X)+4D(Y),可得:D(3X-2Y)=9D(X)+4D(Y)=9×4+4×2=44,故选:D.

设相互独立的两个随机变量X,Y具有同一分布率,且X的分布率为

解(X,Y)组合情况有以下四种:(0,0),(0,1),(1,0),(1,1)对应概率均是14对于后三种情况,Z=1,对于第一种情况,Z=0故:Z的分布律为Z=0,P=14Z=1,P=34

设X和Y是相互独立的随机变量

var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5

求解一道关于分布律的题目 设X和Y是两个相互独立的随机变量

P(Z=0)=P(X=0){P(Y=0)+P(Y=-1)}=0.3P(Z=1)=1-P(Z=0)=0.7如有意见,欢迎讨论,共同学习;如有帮助,

如图 设xy 是两个相互独立的随机变量 求得是D(x+y)

如图(点击可放大):Y的方差,我是用最基本的积分(分部积分)做的,也可以用指数分布的性质做:Y是 λ=1的指数分布,所以它的期望:E(Y)=1/ λ=1它的方差:D(Y)=1/&n

设两个随机变量X和Y相互独立且同分布:P(X=-1)=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列

A写出联合概率分布函数P{(X,Y)=(1,1)}=P{(X,Y)=(1,-1)}=P{(X,Y)=(-1,1)}=P{(X,Y)=(-1,-1)}=1/4所以P{X=Y}=P{(X,Y)=(1,1)

:设X 和Y 是相互独立的且均服从正态分布N( 0 ,0.5)的随机变量,求(X - Y)绝对值的数学期望

E(X-Y)=∑∞P(X1)(Y1)(X1-Y1)=∫∞∫∞f(x)f(y)(x-y)dxdy=0希望能帮到您~

2.设随机变量X与Y相互独立且具有同一分布律:

分布律:Z01P1/43/4V01P3/41/4U01P3/41/4如果这就是你想要的回答

证明:设X和Y为两个随机变量,若对于任意的x和y,X和Y是相互独立的充要条件是P{X

题目错了,正确的命题应该是:设X和Y为两个随机变量,若对于任意的x和y,X和Y是相互独立的充要条件是P{X

设X,Y是相互独立且服从同一分布的两个随机变量,X的概率密度为f(x)=e^-x,当x>0时;f(x)=0,当x为其他时

我希望没看错你的题目,是f(x)=e^-x,我想是这个吧.U=X+Y,V=X-Y.一般的方式是这样因为二者相互独立,so ,fX,Y(x,y)=fX(x)×fY(y)=(e^-x)(e^-y

设随机变量X和Y相互独立,且服从同一分布,证明P(X小于等于Y)=1/2

X,Y互相独立设X的密度函数为f(x),Y的密度函数为f(y)它们的联合密度函数为f(x,y)=f(x)f(y)f(y,x)=f(y)f(x)=f(x,y)f(x,y)关于y=x对称P(X

设x和y是相互独立的两个随机变量,且x服从(-1,2)上的均匀分布,y服从y~N(1,4)则D(XY)=

解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了

设随机变量X和Y相互独立且具有相同的分布,X的概率分布为 X -1 1 Pi 1/2 1/2 求P{X=Y}及P{X>Y

P(X=Y)=P(X=-1,Y=-1)+P(X=1,Y=1)=P(X=-1)P(Y=-1)+P(X=1)P(Y=1)=1/4+1/4=1/2P(X>Y)=P(X=1,Y=-1)=P(X=1)P(Y=-

设随机变量X和Y相互独立,且X~N(3,4),(2,9),则Z=3X-Y~

3X-Y还是正态分布利用公式E(aX+bY)=+aE(X)+bE(Y)D(aX+bY)=+a²D(X)+b²D(Y)

设X与Y相互独立且服从N(0,0.5),证明X-Y是N(0,1)随机变量

因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果

顺便帮忙证明下:设X和Y是相互独立的随机变量,且X~π(λ1),π(λ2),证明Z=X+Y~

是X~π(λ)泊松分布证明:P{X=k}=λ^k*e^(-λ)/k!π(μ)P{Y=k}=μ^k*e^(-μ)/k!Z=X+YP{Z=k}=∑(i=0,...k)P{X=i}*P{Y=k-i}=∑(i

1:设X 和Y 是相互独立的且均服从正态分布N( 0 ,0.5)的随机变量,求(X - Y)绝对值的数学期望 有步

由于格式问题,积分无法在这里显示,需要详细解答请去我的百度空间——>相册——>答案中去看.