设X~U(0,1),Y~U(0,1),且X与Y相互独立,求关于t的二次方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:00:22
设X~U(0,1),Y~U(0,1),且X与Y相互独立,求关于t的二次方程
设随机变量x~U[0,1]Y~U[0,2]并且X和Y相互独立 求min[x,y]的概率密度函数

Z=min(X,Y)f(x,y)=1*(1/2)=1/2P(Z>=z)=P(X>=z,Y>=z)最小的那个都大於z,全都大於z=∫(z~2)∫(z~1)1/2dxdy=(1-z)(2-z)/2(0

设随机变量X>0,Y=X2-U(0,1),试求X的密度函数fx(x)

/>这里要使用这个公式:如果X=g(Y),且g在X可能值得集合上存在可导反函数,则X,Y的密度函数有如下关系:题目有一点不太清楚.如果Y=X^2(Y是X的平方)的话:因为X>0,所以在(0,1)

设随机变量x ,y x相互独立,且x~u[0,3],e(1/3),则x,y 的联合概率密度函数f(x,y)=?

X服从均匀分布,f(x)=1/3,0≤x≤3Y服从指数分布,f(y)=1/3*e^(-y/3),y≥0X,Y相互独立,f(x,y)=f(x)f(y)=1/9*e^(-y/3),0≤x≤3,y≥0再问:

设F为三元可微函数,u=u(x,y,z)是由方程F(u^2-x^2,u^2-y^2,u^2-z^2)=0确定的隐函数,求

F对各分量的偏导依次记为F1,F2,F3.方程对x求偏导得F1·(2u·∂u/∂x-2x)+F2·2u·∂u/∂x+F3·2u·∂u/

设全集U={x∣0

画Venn图容易看出A=A∩B+A∩CuB={1,3,5,7}B∩CuA=U-A-CuA∩CuB={2,4,6,8}B=A∩B+B∩CuA={2,3,4,6,8}

设函数u=u(x,y),由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0定义,求u对y的偏导

由于偏导符号不好打,以下略述我的思路和解法.首先认清题目已知的是f,g,z的函数形式,所以结果应该是它们的偏导的组合.有g(y,z,t),h(z,t)恒等于0,可以把z,t看成只是y的函数,即z=z(

设全集U={x|0

因为A∩B={3},A∩CuB={1,5,7},所以A={1,3,5,7},又Cu(A∪B)=(CuA)∩(CuB)={9},所以A∪B={1,2,3,4,5,6,7,8},所以B={2,3,4,6,

u²+v²-x²-y=0 -u+v-xy+1=0 求∂u/∂x,&

x、y自变量,将式子对x偏导u²+v²-x²-y=0,对x求导2uu'+2vv'-2x=0uu'+vv'-x=0(1)-u+v-xy+1=0-u'+v'-y=0(2)联立

设随机变量X~U(0,1),求Y=X^2的概率密度

先求分布函数,对其求导,就获得概率密度函数;因为概率密度函数积分可以获得分布函数.p(x)=1,when0

设X与Y是相互独立随机变量,X服从均匀分布U[0,1/5].

1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0

设随机变量X~U(0,1),求Y=X²的概率密度

P{Y≤y}=P{x^2≤y}=P{-√y≤x≤√y}=1-2P{x≥√y}=1-2(1-P{x≤√y})=-1+2P{x≤√y}2F(√y)-1fY(y)=[F(√y)]'=f(√y)/2√

设随机变量X~U(0,π),求:随机变量 Y=2X+1的密度函数...

X~U(0,π)(均匀分布),x的密度函数为1/π,x∈(0,π)时,其它均为0X~U(0,π),Y=2X+1∈(1,2π+1)的密度函数为1/(2π),x∈(1,2π+1)时,其它均为0【【不清楚,

设随机变量X~U(0,1),求Y=1/X的概率密度函数

再问:后面的的1-1/y怎么到最后的答案再答:求导啊,密度函数就是分布函数求导

设随机变量X~U(0,1) 求Y= -2ln(x 概率密度

Y=-2ln(X)在X~(0,1)上是相互一对一的函数关系所以可以使用密度函数乘上导数的方法fy(y)=fx(x(y))*|dx/dy|=1|dx/dy|Y=-2ln(X)lnX=-0.5YX=e^(

设随机变量x~u(0,2)求函数Y=1-X的概率密度,概率p{0

你的1/18是怎么来的?明明fx(x)=1/2而已,Y应该也是啊,Jacobbi行列式为1,所以fY(y)=1/2变范围(-1再问:大概可能是这样再答:1-3X?那你题目给错了,你求导求错了fY(y)