设X~U(0,1) 求Y=e^X的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:06:08
设X~U(0,1) 求Y=e^X的概率密度
设随机变量X与Y相互独立,并且均服从U(0, θ),求E(max{X,Y})

这是双变量函数的概率分布,先求出概率分布函数,再求导就得到密度函数.我明白你的意思,你是想让别人帮你做出来.我提供思路.你从分布函数出发,首先求z=max(x,y)的分布函数,它等于p(Z再问:这个混

设随机变量X与Y相互独立,且X~U(0,1),e(1),试求Z=X+Y的概率密度函数

X的概率密度函数为p(x)=1x∈(0,1)0其他Y的概率密度函数为f(x)=e^(-x)x≥00其他利用和的分布公式可知,Z的概率密度函数为g(y)=∫Rp(x)f(y-x)dx=0y≤0∫[0,y

概率论题.设随机变量X与Y相互独立,且X~(0,2),U(0,2),求E[(X+Y)^2].问下E(X^2)=[E(X)

EX^2=(EX)^2+D(X),这里D(X)是方差.E[(X+Y)^2]=E(X^2+Y^2+2XY)=EX^2+EY^2+2E(XY)=4+4+2EX*EY(X,Y独立,EX*EY=E(XY)=8

设随机变量x ,y x相互独立,且x~u[0,3],e(1/3),则x,y 的联合概率密度函数f(x,y)=?

X服从均匀分布,f(x)=1/3,0≤x≤3Y服从指数分布,f(y)=1/3*e^(-y/3),y≥0X,Y相互独立,f(x,y)=f(x)f(y)=1/9*e^(-y/3),0≤x≤3,y≥0再问:

设随机变量X,Y相互独立,且E(X)=E(Y)=0,D(X)=D(Y)=1,试求E[(X+Y)^2].

E[(X+Y)^2]=D(X+y)+[E(x+y)]^2,D(X+y)=D(x)+D(y)=2.E(x+y)=E(x)+E(y)=0;所以E[(X+Y)^2]=2不对么?

设 e^(x+y) - xy = 1,求 dy/dx \ x=0 y=0

e^(x+y)-xy=1两边同时求导,e^(x+y)*(1+dy/dx)-y-xdy/dz=0(1)验证x=0,y=0在原曲线上.令x=0,y=0代入到(1)e^0*(1+dy/dz)-0-0*dy/

设y=y(x)由方程xe^f(y)=e^y确定,f(u)可导且f′≠1,求dy/dx

你让我情何以堪,微积分没学会遇到偏导数和隐函数的题?对方程两边取对数,化简后成了lnx+f(y)=y然后求导(这里其实用了偏导和隐函数求导.)y‘=1/x+f’(y)再问:隐函数刚学就有这题了,谢了能

设f(u)为可导函数,求dy/dx:(1) y=f(x^3) ; (2) y=f(e^x+x^e); (3) y=f(e

1.dy/dx=f'(x^3)*3x^22.dy/dx=f'(e^x+x^e)*(e^x+ex^(e-1))3.dy/dx=f'(e^x)*(e^x)e^f(x)+f(e^x)[e^f(x)]*f'(

设随机变量X服从参数为2的指数分布,证明Y=e^-2X服从U(0,1)

解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!

设x=u.e^u,u^2+v^2=1,求dv/dx;求详解

x=ue^u两边微分:dx=e^udu+ue^udu=[(1+u)e^u]dudu/dx=1/[(1+u)e^u]u^2+v^2=1两边微分:2udu+2vdv=0dv/du=-u/vdv/dx=(d

设y=[e^x+e^(-x)]^2,求dy

dy=2[e^x+e^(-x)]*[e^x-e^(-x)]dx再问:��������ϸ����再答:��������ϸ��������Dz��谡̫��û�취再问:������y���

概率论 Y = lnX N(u,1) 求E(X)

回答:根据题意,Y∼N(μ,1),X=e^(Y),y=h(x)=lnx,h'(x)=1/x.于是,X的概率密度为ψ(x)=[1/√(2π)]{e^[-(1/2)(lnx-μ)^2]}(1/

设随机变量X~U(0,1),求Y=X^2的概率密度

先求分布函数,对其求导,就获得概率密度函数;因为概率密度函数积分可以获得分布函数.p(x)=1,when0

设随机变量X~U(0,1),求Y=X²的概率密度

P{Y≤y}=P{x^2≤y}=P{-√y≤x≤√y}=1-2P{x≥√y}=1-2(1-P{x≤√y})=-1+2P{x≤√y}2F(√y)-1fY(y)=[F(√y)]'=f(√y)/2√

设z=uv,u=e^(x+y),v=ln(xy)求dy

dy/dx=dy/du*du/dx+dy/dv*dv/dx=v*e^(x+y)+u*y/x=ln(xy)*e^(x+y)+e^(x+y)*y/x=e^(x+y)[ln(xy)+y/x]所以dy=e^(

设随机变量X~U(0,π),求:随机变量 Y=2X+1的密度函数...

X~U(0,π)(均匀分布),x的密度函数为1/π,x∈(0,π)时,其它均为0X~U(0,π),Y=2X+1∈(1,2π+1)的密度函数为1/(2π),x∈(1,2π+1)时,其它均为0【【不清楚,

设随机变量X~U(0,1),求Y=1/X的概率密度函数

再问:后面的的1-1/y怎么到最后的答案再答:求导啊,密度函数就是分布函数求导

设随机变量X~U(0,1) 求Y= -2ln(x 概率密度

Y=-2ln(X)在X~(0,1)上是相互一对一的函数关系所以可以使用密度函数乘上导数的方法fy(y)=fx(x(y))*|dx/dy|=1|dx/dy|Y=-2ln(X)lnX=-0.5YX=e^(