设Xn,n=1,2...,是独立同分布的实随机变量序列,Y你是佛均方收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:58:13
不相等再问:那下角标是什么意思?谢谢回答再答:什么意思,是word里的吗?用ctrl加+就是了。再问:不是关于软件的问题,我想问这个公式左边X的下角标为什么要+1,和等号右边的Xn不一样吗?区别在哪里
题目写了错吧,等号右边的3(1+xn)/1+xn不是约了吗
记limxn=a,则limxn+1=limxn=a.对xn+1=3(1+xn)/3+xn两边取极限,得到a=3(1+a)/(3+a),解得a=正负根号3.由已知条件易知xn>0,所以limxn>=0.
按你的做法,极限设为a,可得a=ln(1+a),其实这个有解,就是a=0.可以通过特殊值验证来求这个极限,设X1=1,那么X2=ln(1+1)=ln2约=0.69
X(n+1)=2xn/(xn+2)两边转化为倒数得到1/X(n+1)=(xn+2)/2xn1/X(n+1)=1/2+1/xn1/X(n+1)-1/xn=1/2公差为1/2的等差数列
x(n+1)=(xn+2)/(xn+1)(n>=0),X(n+2)=[X(n+1)]^2
极限为0.5*(1+根号5).证明:设f(x)=1+(Xn-1/(1+Xn-1)),对f(x)求导,得导数为正,f(x)单调递增,又f(x)=1+(Xn-1/(1+Xn-1))小于2,有上界.利用单调
是x(n+1)=x(n+2)/x(n+1)有2个x(n+1),不对吧再问:是X(n+1)=(Xn+2)/(Xn+1)。。。。。
证明:∵x(0)>0且x(n+1)=[x(n)+a/x(n)]/2∴x(n)>0∴由均值不等式知[x(n)+a/x(n)]/2≥√a即x(n+1)≥√a∴数列{x(n)}有下界.(1)又x(n+1)/
这个显然吗.因为设:yn=│Xn+1-Xn│,n=1,2,...因为(yn+1)/yn≤k
注意到x(n+1)>=2√(xn/2*1/xn)=√2,且x(n+1)-xn=1/xn-xn/2=(2-xn^2)/(2xn)
x(2n)=2/(2n)=1/n->0,x(2n-1)=0.{x(n)}的极限为0.
该题可以这样证明期间文字诸多表达不变LZ慢慢看所求证的式子用S表示每一项x(n+1)/xn用yn表示并且令x1=y1可以看出yn的极限为AS=lim(y1*y2*y3……y(n-1))^(1/n)=l
因为要保证n>N时,1/n<epsilon再问:为什么是1/n<ε再问:能不能具体给我讲讲再答:因为你最终要证明的就是|1/ncosnpi/2-0|
http://baike.baidu.com/view/1504001.htm
取对数,原不等式等价于x1lnx1+x2lnx2+...+xnlnxn≥(x1+x2+..+xn)(lnx1+lnx2+...+lnxn)/n即n(x1lnx1+x2lnx2+...+xnlnxn)≥