设x1x2x3x4是来自参数为的泊松分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:51:13
(1)曲C的极坐标方程可化为:ρ2=2ρsinθ,又x2+y2=ρ2,x=ρcosθ,y=ρsinθ.所以,曲C的直角坐标方程为:x2+y2-2y=0.(2)将直线L的参数方程化为直角坐标方程得:y=
f(x)=1,1≤x≤2f(y|x)=xe^(-xy),y≥0f(y|x)=f(x,y)/f(x)=f(x,y)=xe^(-xy)令z=xy,z≥0F(z)=P(Z≤z)=P(XY≤z)=∫(1,2)
xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0
X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.
根据无偏估计的定义,统计量的数学期望等于被估计的参数,具体到这里就是说E(c*X的平均值)=θ又由期望的性质E(c*X的平均值)=cE(X的平均值)=θ那么E(X的平均值)=θ/c又E(X的平均值)其
因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-
若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服
服从~N(u,σ^2/n)正态分布
√a(X1-X2),√b(X3-X4)一定要服从N(0,1)D(√a(X1-X2))=a(D(X1)+D(X2))=8a=1D(√b(X3-X4))=b(D(X3)+D(X4))=8b=1a=1/8,
Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服
该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对
大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i
1、∑(Xi-x)^2/σ^2~χ(n-1)2、样本方差S^2的定义:S^2=(1/(n-1))*∑(Xi-x)^2两者系数比较一下,选择C
楼上的.是"Pleasestudyhard.”
P(X=1)=pP(X=0)=1-p所以X的密度函数是P(X=a)=p^a*(1-p)^(1-a)a=0或1p未知,p∈[0,1]样本为X1……XN所以似然函数是L(x1,x2……xn;p)=(p^x
曲线x=-2tcosA,y=-2tsinA(A为参数,0≤A<2π)转化成一般方程就是x²+y²=(-2tcosA)²+(-2tsinA)²=4t²即