设x1,x2,...x100是总体ξ~(80,400)的一组简单随机样本,求P
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:17:46
x1,x2是一元二次方程x2+3x-3=0的两个实数根∴x1+x2=-3x1x2=-3∴x1/x2+x2/x1=(x1²+x2²)/x1x2=[(x1+x2)²-2x1x
根据根与系数关系x1+x2=6x1*x2=-7
同学..这个已经接近柯西不等式的一般形式了一般形式为(a1^2+a2^2+.an^2)(b1^2+b2^2+...b^2)>=(a1b1+a2b2+.anbn)^2令ai=√xi,bi=1/√xi就得
题1本身就是柯西不等式,一步即得题2,3皆可用均值不等式调和平均数≤算术平均数3中化Xi^2\(1+Xi)为Xi-1+1\(1+Xi)
你上几年级啊!哥也无奈吗不是?
由题可知21(X1+X2)+12X2=2010X1+X2+X3=2(X1+X2)X1+X2=(2010-12X2)/21又所有数字由自然数构成当X2=10时X1+X2=(2010-120)/21=90
∵⊿=2²-4×1×﹙-1﹚=8>0∴方程有两不等的实根∵x1<x2∴x1-x2=-√﹙x1-x2﹚²=-√[﹙x1+x2﹚²-4x1x2]=√[﹙-2﹚²-4
行列式展开=x1^3+x2^3+x3^3-3x1x2x3而x1^3+x2^3+x3^3-3x1x2x3=(x1+x2+x3)(x1^2+x2^2+x3^2-x1x2-x2x3-x3x1)(展开右边即得
1假设X1+X2=M为最大值,则X2+X3,X3+X4和X4+X5均小于或等于M所以x1+x2+x3+x4+x5
解题思路:利用一元二次方程根与系数的关系求解。解题过程:最终答案:略
原式=1+5+9+13.+201=(201+1)x21÷2=5151
设其中有a个2,b个1,c个零,d个-1,可知a+b+c+d=n且a,b,c,d均为大于等于零的整数,并满足2a+b-d=194a+b+d=99令S=X1的立方+X2的立方+……Xn的立方则有S=8a
x1.x2是方程2x²-x-3=0的两实根∴x1+x2=1/2x1x2=-3/2∴x1+x2+x1*x2=1/2-3/2=-1
x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|
a^2*S^2
算出行列式的值,再整理成只和x1+x2+x3,x1x2+x2x3+x3x1,x1x2x3这三项有关的形式,利用三次方程韦达定理带入系数可求.
根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√
你弄反了递减的话,是:f(x1)-f(x2)>0因为x1-x2