设X1,X2,--x100为来自参数为3的泊松分布的一个样本,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:55:30
设X1,X2,--x100为来自参数为3的泊松分布的一个样本,
设函数F(X)的定义域为R,对任意实数X1,X2,有F(X1)+F(X2)=2F(X1+X2/2)乘以F(X1-X2)/

1.求F(0)的值F(x1)+F(x2)=2F((x1+x2)/2)F((x1-x2)/2),x1=x2=x2F(x)=2F(x)F(0)F(0)=1F(x)+F(-x)=2F((x-x)/2)F((

设X1、X2、X3、X4、X5均为自然数,且X1+X2+X3+X4+X5=X1*X2*X3*X4*X5 求X5的最大值

1+1+1+1+5=1*1*1*1*51.01+1.01+1.01+1.01+99.497561940310821517382150186644=1.01*1.01*1.01*1.01*99.4975

设函数f(x)的定义域为R,对任意实数x1,x2,总有f(x1+x2)=f(x1)*f(x2)

首先取x1=x2=x/2=>f(x)=f(x/2)^2>=0任取x1f(1)x^2+y^2

设一元二次方程x²-6x+4=0的两个实数根分别为x1和x2,则X1+X2=?X1乘X2=?

x1+x2=-b/a=-(-6)=6x1*x2=c/a=4这个是韦达定理,或者叫一元二次方程根与系数的关系.很高兴为您答题,如果有其他需要帮助的题目,您可以求助我.再问:谢谢!忘了这个知识点再答:现在

设3x²+2x-3=0,两根为x1,x2,求①x2/x1 + x1/x2 ②x1^2+x2^2-4x1x2

根据韦达定理有X1+X2=-b/a=-2/3,X1*X2=c/a=-3/3=-1①x2/x1+x1/x2=(x2²+x1²)/(x1x2)=【(x1+x2)²-2x1x2

设x1,x2,...,xn为任意实数,求证:x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1

和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2

设函数f(x)的定义域为R,对任意实数x1,x2,有f(x1)+f(x2)=2f{(x1+x2)/2}×f{(x1-x2

/>1.∵f(X1)+f(X2)=2f{(X1+X2)/2}f{(X1-X2)/2},令X2=X1,得2f(X1)=2f(X1)f(0),即有f(X1)[1-f(0)]=0又∵对任意实数x1上式都成立

设f(x)=x^2+bx+c,方程f(x)-x=0的两个实根为x1,x2,则满足x1>0,x2-x1>1.

(1)构建函数g(x)=f(x)-x=x^2+(b-1)x+c,x2-x1>1,根据韦达定理,(x1+x2)^2-4x1x2>1,所以(b-1)^2-4c>1,化简即得到答案(1)(2)由于x^2+(

1x1-2x2+3x3-4x4+5x5-6x6.-100x100+101x101

原式=1+5+9+13.+201=(201+1)x21÷2=5151

设总体X~N(0,σ^2),X1、X2为X的样本,求证(X1+X2)^2/(X1-X2)^2服从分布F(1,1)

N(0,σ^2)E(X1+X2)=EX1+EX2=0D(X1+X2)=DX1+DX2=2σ^2X1+X2~N(0,2σ^2)同理:X1-X2~N(0,2σ^2)所以1/√2σ(X1+X2)~N(0,1

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

设方程2X²-3X+1=0的两个根为X1 X2 求:1.X1²+X2²2.X1分之一+X2

设方程2X²-3X+1=0的两个根为X1X2则X1+X2=-(-3)/2=3/2X1*X2=1/2X1²+X2²=(X1+X2)²-2*X1*X2=(3/2)&

设x1,x2,…,xn平均数为.x

根据方差的意义知,方差为0,则没有波动,故有:x1=x2=…=xn.故填x1=x2=…=xn.

设方程X^-2X-1的两根为X1,X2,求分别以下列两数为根的一元二次方程:(1)X1^,X2^ (2)-X1,-X2.

对于方程x^2-2x-1=0,它的两根为x1,x2,由根与系数关系(或韦达定理)可得:x1+x2=2,x1x2=-1.故有:x1^2+x2^2=(x1+x2)^2-2x1x2=2^2-2*(-1)=6

设两个总体X与Y相互独立都服从正态分布N(30,20^2)(X1,X2,…,X20),(Y1,Y2,…,Y25)分别为来

服从正态分布的随机变量的线性组合仍然服从正态分布,所以样本均值(X-Y)服从N(0,36)分布,(注:X-Y服从N(u1-u2,(σ1^2)/n1+(σ2^2)/n2).剩下的就是求正态分布的概率问题

设x1,x2…x7为正整数,且x1<x2…<x7,且x1+x2...+x7=159,求x1+x2+x3的最大值

/>设x1+x2+x3最大为a,则x4≥x1+3,x5≥x2+3,x6≥x3+3,x7≥x3+4,x1+x2+x3+x4+x5+x6+x7=159≥a+(a+3+3+3)+a/3+4,解得:a≤62又

设x1,x2(x1

根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√

设x1,x2.x7为自然数,且x1

(1)依题意,x4,x5,x6,x7越小越好,x1,x2,x3越大越好.(2)但x1

设x1,x2为x^2-x+3=0两根,则x1^3-4x2^2+19=( )

x1^2=3-x1,x2^2=3-x2,x1^3-4x2^2+19=3x1-x1^2-4x2^2+19=3x1-x1^2+4x2+7,x1+x2=-1,原式=4+x2-x1^2=4+x2-3+x1=0