设v是数域p上的n维线性空间都与Pn同构
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 15:56:53
题目是不是这样V={(a,b,a,b,...,a,b)|a,b属于P};V是由所有(a,b,a,b,...,a,b)这样的向量构成的.再问:是的。再答:首先你要理解V的含义,即V中元素是这样的向量α=
先取V的一组基{e},这样就可以用具体的坐标来描述所有的东西假定m=dim(W1),k=dim(W2)=n-m,只需讨论m和k都非零的情况,余下的是平凡的取W1的一组基,这组基在{e}下的坐标表示是一
任取数域P上任意两个n维线性空间V1,V2.取V1上的一组基a1,a2,···,an;取V2上的一组基b1,b2,···,bn.则任意向量a属于V1有a=k1a1+k2a2+···+knan;构造映射
选B:行列式.再问:为什么呢?再答:因为A和-A在同一基下的矩阵B,C满足:B=-C.取行列式有|B|=|-C|=(-1)^n*|C|=|C|.
(1)两个子空间的和是直和只需要证明它们的交只有零向量.设Y∈ker(A)∩im(A),则AY=0且存在X使Y=AX.∵A²=A,∴Y=AX=A²X=A(AX)=AY=0.即ker
基本上忘光了,只能给你建议个思考方向.多项式矩阵和Jordan标准型
线性空间是定义两种封闭运算的满足八条基本性质的非空集合,W为数域F上的n维线性空间V的子集合,所以W满足八条基本性质.所以只有W的运算封闭,就是线性空间.0+0=0,k0=0再问:谢谢你,你能帮我回答
只需说明V对矩阵的加法及数乘运算封闭:两个上三角矩阵的和仍是上三角一个数乘上三角矩阵仍是上三角矩阵所以V是线性空间.其维数为n+(n-1)+...+1=(n+1)n/2再问:维数是怎么计算的呢为什么这
能构成,V是他的子空间,验证加法和数乘运算的封闭性就可以了
不太会证,用矩阵的语言说明思路吧.矩阵T的等价标准型为D=【E0;00】,其中E是单位阵,阶数是T的秩,也就是变换T的像空间的维数.故存在可逆矩阵P,Q使得PTQ=D,令S=QP,则TST=P^(-1
第一问:设ξ是线性变换T的任一个特征向量,对应的特征值是λ,则有Tξ=λξ,两边左边用T作用,得T^2(ξ)=T(Tξ)=λTξ=λ^2ξ,而由已知,T^2=I,故λ^2ξ=ξ,因为ξ≠0==>λ^2
设V是数域P上的n维线性空间,W是V的一个s维子空间,那么,取定W的一个基:E1,E2,...,Es,将W的这个基扩充为V的一个基,记为,E1,E2,...,Es,Es+1,...,En现在我们构造一
证:设k0a+k1B(a)+k2B^2(a)+……+k(n-1)B^(n-1)(a)=0(1)用B^(n-1)作用等式两边,因为B^n(a)=0,故得k0B^(n-1)(a)=0.又因为B^(n-1)
V必存在一组正交基r=1V的基的线性组合有无穷多个,可组成无穷多彼此间线性无关的子空间的基,这是因为,n元齐线性方程组有无穷多个,且必有解.1
用反证法.若λ=0是特征值,ξ是对应的特征向量,那么: Aξ=λξ=0于是,一方面:A^(-1)[Aξ]=A^(-1)[0]=0另一方面:A^(-1)[Aξ]=[A^
(证明存在向量a属于V但a不属于V1、V2中任意一个)证明:因为V1、V2互不包含且它们均V的真子空间从而必存在a1属于V1且a1不属于V2、a2属于V2且a2不属于V1现证明a1+a2不属于V1且a
则W是V的子空间的判别条件为________对任意k1∈P,k2∈P和α∈W,β∈W有k1α+k2β∈W.亦即:W对V上的线性运算封闭.
你不是在写题解吧怎么这么多问题?A(α+β)=Aα+AβA(kα)=kAα