设Un≥0,且nUn有界,证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:16:22
其实只需试着写两项就能发现关键了.那个级数写出来是-(U[1]+U[2])+(U[2]+U[3])-(U[3]+U[4])+...除了U[1]以外的项都两两消掉了.形式化的写出来是这样.考虑级数∑{1
用比较判别法证明.经济数学团队帮你解答.请及时评价.
F(a)=∫(0→a)f(t)f'(2a-t)dt=∫(2a→a)f(2a-x)f'(x)d(2a-x)(x=2a-t)=∫(a→2a)f(2a-t)f'(t)dt=∫(a→2a)f(2a-t)d(f
正项级数:∑(an-Un):(an-Un)≤(Vn-Un)因为正项级数∑(Vn-Un)收敛(两个收敛级数的差)由比较判别法正项级数:∑(an-Un)收敛.∑an=∑[(an-Un)+Un])收敛:(两
这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(
数列Xn有界,即!Xn!0,总有N>0使得当n>N时!Yn-0!0,总有N>0使得当n>N时!XnYn-0!
∵limUn=A>0∴存在常数A,对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式|Un-A|<ε都成立,|U(n+1)-A|2,取ε<A-2,当n>N时,不等式|[U(n
设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊
取ε=a-b>0,则存在N>0,使当n>N时|un-a|所以-ε则un>a-ε=b.
用定义证明即可,因为数列{Xn}有界所以存在常数C》0,使得|Xn|N时,|Yn|N的时候|XnYn|=|Xn||Yn|
当n趋于无穷大时yn为无穷小,xn为有界函数,有界函数乘以无穷小结果还是无穷小.所以xn.yn=o明白了吗?
证明:构造函数g(x)=(1/2)kx²+f'(0)x+f(0),容易验证g(0)=f(0).∵g'(x)=kx+f'(0)∴g'(0)=f'(0),g''(x)=k[f'(x)-g'(x)
∵对任意的x,f(0)=f(x)+f'(x)(0-x)f(1)=f(x)+f'(x)(1-x)两式相加得∴2f(x)=(2x-1)f'(x)即f(x)=(x-1/2)f'(x)且0≤x≤1∴l∫f(x
这是错的.比如Un=1/n
∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1
因为数列{X}有界,所以设绝对值X
要证∑unvn绝对收敛就是要证级数∑|unvn|=∑|un||vn|收敛,由于∑vn收敛,故数列{vn}有界(因为limvn=0),所以有|vn|≤M.根据级数的柯西收敛原理,由∑un绝对收敛可知,对
是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/