设r是矩阵A的特征方程的3重根

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/07 09:24:43
设r是矩阵A的特征方程的3重根
已知A是3阶矩阵,r(A)=1,则x=0是A的几重特征值

因为r(A)=1,所以AX=0的基础解系含3-1=2个向量所以A的属于特征值0的线性无关的特征向量有2个所以0至少是A的2重特征值由于A的全部特征值的和等于A的迹a11+a22+a33所以A的另一个特

设A,B都是实数域R上的n×n矩阵,证明:AB,BA的特征多项式相等

就是要证明|λE-AB|=|λE-BA|.考虑分块矩阵P=E0-AE与分块矩阵Q=λEBλAλE可算得PQ=λEB0λE-AB有λ^n·|λE-AB|=|λE|·|λE-AB|=|PQ|=|P|·|Q

设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,

提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.

设A是m×n的矩阵,B是n×p的矩阵,证明:若R(A)=n,R(AB)=R(B)

因为R(A)=n那么取A中n行构成A的基CC的大小是n*n设R(B)=y同理取B的基DD的大小是n*y因为R(C*D)=R(D)=R(B);所以R(AB)=R(B);

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设A为n阶矩阵,那么对任何n维列向量b,方程Ax=b都有解的充要条件为什么答案是R(A)=n,而不是R(A)=R(A,b

因为对任何n维列向量b,方程组Ax=b都有解.此时n维列向量b分两种情况:1)b=0,则AX=0.这是齐次线性方程组,R(A)=n,系数行列式IAI不等于0,即必有零解.2)b不=0,则AX=b.这是

问个线性代数题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×r矩阵B与秩为r的r×n矩阵C使A=BC

这个叫做矩阵的满秩分解,《矩阵论》上的定理.证明:A是m×n矩阵,R(A)=r,则A一定能通过初等行列变换变成如下矩阵100...00010...00001...00...000...00就是左上角是

设A是3阶实对称矩阵,满足A∧2=3A,且R(A)=2,那么矩阵A的三个特征值是?

再问:为什么是330不是003呀?再答:因为它的秩为2,如果是0,0,3的话,秩就是1了。再问:我就是这个地方不明白,可以再说清楚一点吗π_π再答:实对称矩阵必相似于一个对角矩阵,且对角矩阵的对角元素

设A是n阶可逆实数矩阵,证明A(AT)的特征根大于0.AT是A的转置矩阵

就是证明AA^T是正定阵即可.因为对任意的n维列向量x,有x^T(AA^T)x=(A^Tx)^T(A^Tx)>=0,且等号成立的充要条件是A^Tx=0,而A可逆,即A^T可逆,因此等号成立的充要条件是

设A是一个3阶实对称矩阵 ,证明A的特征根都是实根

如果λ是A的特征值,x是其特征向量,即Ax=λx左乘x^H(x的共轭转置)得到λ=(x^HAx)/(x^Hx),分子和分母都是实数

求矩阵秩设A是n阶矩阵,n≥3,A*是A的伴随矩阵,那么(A*)*的秩r是多少?

设A是n阶方阵,则当r(A)=n时,r(A*)=n当r(A)=n-1时,r(A*)=1当r(A)所以设A是n阶方阵,则当r(A)=n时,r(A*)=n,则r(A*)*=n当r(A)=n-1时,r(A*

设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( )

C再问:no是A再答:sorryA可对角化时是k=3,A不可对角化时k≤3

设A是N阶可逆矩阵,A1是A的前r行构成的r*n矩阵,

线性方程组A1=b--这是什么线性方程组再问:少写了个x应该是A1X=b再答:这是什么题呀,A1x是r行,b是n行,不能相等呀再问:是呀,太坑人了。不过要谢谢老师再答:你只要记住:行满秩时一定有解,若

设A,B是n阶矩阵,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r([A,B])

将X={x1...},B={b1.}都看成列向量组.则方程化为方程组Ax=b.可知向量b与A线性相关,因此r(A)=r([A,B]).反之.r(A)=r([A,B]).可说明B的列向量b1.都可由A的

线性代数的2个题当满足下列等式的矩阵方程时,求其中的矩阵?设矩阵 计算出它的秩r(A)=( A、1 B、2 C、3 D、

题1:矩阵减法运算学过吗?x(1,1)为矩阵X的第一行第一列的值,2-2x(1,1)=-4,得到x(1,1)=3,选择B1-2x(1,2)=3,依次类推,省略,选择题不用全算.题2:使用矩阵行列变换,