设r(A)=2,n1,n2,n3是Ax=b的三个解向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:05:41
设r(A)=2,n1,n2,n3是Ax=b的三个解向量
设f(1)=2,f(n)>0(n属于正整数)有f(n1+n2)=f(n1)f(n2),试猜想出f(n)的表达式,并证明你

猜想:f(n)=2^n用Cauchy法证明:首先对于正整数n有f(n)=f(1)^n=2^nf(0)=f(0)^2,则f(0)=0或1若f(0)=0则f(n)=f(n+0)=f(n)f(0)=0与f(

设f(1)=2,f(n)>0(n属于n+),有f(n1+n2)=f(n1)f(n2),试猜想出f(n)的表

f1=2,f2=f(1+1)=f1*f1=2*2=4f(n+1)=fn*f1=2fn即f(n+1)/f(n)=2,可以得出fn=2^n(n属于n+)再问:如何证明再答:很容易证明啊,根据已知条件有:f

如图所示为由一个原线圈n1和两个副线圈n2、n3组成的理想变压器,已知n1:n2:n3=4:2:1,电阻R=3Ω,副线圈

由于是理想变压器,所以有P1=P2+p3所以P1=2×6+4×3=24W又U1U2=n1n2,所以U1=n1n2U2=42×6V=12V所以原线圈中的电流为I1=P1U1=2412=2A所以电阻R消耗

证明极限的唯一性.由limxn=A,limxn=B,则对于ε1>0,ε2>0,分别存在N1,N2∈N*,当n>N1时,|

(A-ε,A+ε)与(B-ε,B+ε)分别是A,B的ε领域,如果A不等于B,那么肯定当ε足够小的时候是不相交的.那么xn就不可能同时存在于这两个集合.

折射率与波长的关系波长(R),折射率(N) R1.N1=R2.N2=R3.N3是否成立

波长越大则频率越小,同一介质中折射率也就越小.也就是说波长与折射率成反比

若自然数n1>n2,且n1^2-n2^2-2n1-2n2=19,求n1与n2的值

简单啊,n1=11,n2=8.你自己算算看嘛!“^”这个符号的意思是乘方,可以化解写成:(n1+n2)(n1-n2-2)=19这个式子很容易拆分的.代入11和8就可以了

已知函数y=f(n),设f(1)=3,并且对于任意的n1、n2,都有f(n1+n2)=f(n1)(n2)成立

∵f(1)=3,对于任意的n1,n2∈N*,f(n1+n2)=f(n1)f(n2).∴f(2)=f(1+1)=f(1)f(1)=3^2=9,f(3)=f(2+1)=f(2)f(1)=3^2×3=3^3

设集合A={y|y=x2-4x+3,x属于R},集合B={m|m=-n2-2n+2,n属于R},求A并B,A交B

集合A的解集为y=x2-4x+3=(x-2)2-1y>=-1集合B的解集:m=-n2-2n+2,=-(n+1)2+3m<=3A并B=R,,A交B=【-1,3】2.f2)<08+(7-3m2)2+1/2

设A为m*n矩阵,n1,n2,n3,n4,是齐次线性方程组AX=0的一个基础解系,则一定有 A.r(A)=4 B.r(A

再答:这是个定理,老师让记住的。再问:奥谢谢啊再问:你是学什么的啊对于矩阵这一块我很迷糊

设f(n)>0(n属于N*),对任意自然数n1和n2,总有f(n1+n2)=f(n1)f(n2),又f(2)=4,求f(

f(n1+n2)=f(n1)f(n2),又f(2)=4f(2)=f(1+1)=[f(1)]^2f(n)>0f(1)=2f(2)=4f(3)=f(1+2)=f(1)f(2)=8f(4)=f(1+3)=f

求组合 ∑Cr.n1乘C(n-r).n2 = ?急!

Cnn1+n2在n1+n2中选n个相当于在n1中选r个(r可以是0)再在剩下的中选n-r个

n1=2,n2=++n1,n1=n2++ 执行后n1,n2的值

n2=++n1先作n1=++n1,此时n1=n1+1=2+1=3,再作n2=n1=3n1=n2++先作n1=n2=3,再作n2=n2++=n2+1=3+1=4执行后n1=3,n2=4

设f(1)=2,f(n)>0(n属于正整数)有f(n1+n2)=f(n1)f(n2),求f(n)

f(n)=2^nf(n)=f(n-1)*f(1)=f(n-2)*f(1)*f(1)=f(1)*f(1)*……*f(1)一共有n个=【f(1)】^n=2^n

设自然数n1>n2,且n12-n22=79,则n1=______,n2=______.

∵n12-n22=79,即(n1-n2)(n1+n2)=79,79=1×79,∴n1-n2=1,n1+n2=79,∴n1=40,n2=39.故答案为40,39.

设3元线性方程组AX=b,A的秩为2,n1,n2,n3为方程组的解,n1+n2=(2,4,0)^T,n1+n3=(1,-

由于方程组是非齐次的它的解等于它本身的一个解加上它的齐次方程组的解它的齐次方程组的解直接用n2-n3就得到了也就是(1,6,-1)T

问一道数学题,请谁知道的告诉我可以不.f(n)>0,f(2)=4,f(n1+n2)=f(n1)f(n2).猜想f(n)的

解∵f(n1+n2)=f(n1)f(n2)∴f(n)=a^x有∵,f(2)=4∴a=2∴f(n)=2^x

已知a(n1+n2)=a(n1)*a(n2)求证为等比数列

令n1=n,n2=1有a(n+1)=an*a1若a1不为0,则an为等比数列,首项为a1,公比为a1

已知对任意n1,n2∈N*,有f(n1+n2)=f(n1).f(n2),f(1)=2

f(0+0)=f(0)f(0)f(0)=1f(1+11)=f(1)*f(1)f(2)=4f(3)=f(1+2)=2*4=8同理f(4)=16(2)猜测f(n)=2的n次方根据f(1)=2.成立令f(n