设n阶矩阵满足A的M次方=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:48:50
设n阶矩阵满足A的M次方=0
设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A|

E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=

设n阶方阵A满足A^3+2A-3E=0,证明矩阵A可逆,并写出A的逆矩阵的表达式.

因A^3+2A-3E=0变形A^3+2A=3E即A[1/3(A^2+2E)]=E也就是存在B=1/3(A^2+2E)使得AB=BA=E按定义知A可逆且逆矩阵A^(-1)=1/3(A^2+2E)

设n阶矩阵A满足A的m次方等于0,m是正整数,证明E-A可逆,且E-A的逆矩阵等于E+A+A^2+A^3+.+A^m-1

证明:由题设,n阶矩阵A满足A^m=0(零矩阵),因为(E-A)[E+A+A^2+A^3+.+A^(m-1)]=E-A^m=E-0=E,又因为[E+A+A^2+A^3+.+A^(m-1)](E-A)=

设P是n阶可逆矩阵,如果B=P的负一次方AP,证明:B的m次方=A的m次方P求解

B=P^(-1)AP所以B^m=P^(-1)APP^(-1)APP^(-1)AP...P^(-1)AP(m个相乘)=P^(-1)A[PP^(-1)]A[PP^(-1)]A[P...P^(-1)]AP(

设A是n阶矩阵,满足A的k次方等于0(k是正整数).求证:E-A可逆,并且(E-A)的-1次方等于E+A+A的2次方+…

由于(E-A)(E+A+A²+...A的k-1次方)=(E+A+A²+...A的k-1次方)-(A+A²+...A的k次方)(注意抵消规律)=E-A的k次方=E-0=E所

设A是m*n矩阵,且列向量组线性无关,B是n阶矩阵,满足AB=A,则r(B)等于多少

易知:A是m*n矩阵,且列向量组线性无关,所以r(A)=n,所以r(AB)=r(A)=n,因为n=r(AB)≤r(B)(或r(A))≤n(B是n阶矩阵)所以n≤r(B)≤n=>r(B)=n(2)此外,

设n阶矩阵A满足A(的平方)-A-2E=0,证明A及A+2E都可逆,并求出这两个逆矩阵

移项:A^2=A+2E两边同乘以A^(-2)就得到:E=(A+2E)^A*(-2)

设n阶方阵A满足(A+E)3=0,证明矩阵A可逆,并写出A逆矩阵的表达式.

直接求出逆阵就说明了其可逆了A^3+3A^2+3A+E=0A(-A^2-3A-3E)=E从而A的逆阵为-A^2-3A-3E

线性代数逆矩阵题设N阶矩阵A满足A的M方=0,M是正整数.试证E-A可逆,且(E-A)的-1次方=E+A+A的平方+A的

(E-A)(E+A+A^2+...+A^(m-1))=(E+A+A^2+...+A^(m-1))-A(E+A+A^2+...+A^(m-1))=(E+A+A^2+...+A^(m-1))-(A+A^2

设A为n阶矩阵A的m次方等于0矩阵,证明E-A可逆

A^m=0A^m-E^m=-E^m针对左边利用展开式(A-E)[A^(m-1)+A^(m-2)E+……+E]=-E矩阵可逆的定义就是看这个矩阵和另外一个的乘积是否为单位阵这个只能这种方法

设n阶矩阵A满足A的2次方=E,证明A的特征值只能是正负1

Aa=ra,a不为0向量,r为特征根.a=Ea=A^2a=A(Aa)=Ara=rAa=r(ra)=r^2a=>r^2=1,r=1or-1.

设A为m*n的矩阵,B为n*m的矩阵,m>n,证明AB=0

应该是行列式|AB|=0因为A为m*n的矩阵所以r(A)

设A为实数域上的n阶对称矩阵,且满足A2=0,求证:A=0

两侧的括号省略设A=abbca,bc均为实数.A^2=AA=ababbc乘bc按定义:AA=a^2+b^2ab+bcab+bcb^2+c^2由已知:A^2=0,即各元素均为0.得:a^2+b^2=0,

设n阶矩阵A满足A^2+2A+3I=0,则A的逆矩阵?

因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).

设A为n阶矩阵,满足A2=A,设A为n阶矩阵,满足A2=A,试证:r(A)+r(A+I)=n

(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x

设a是n阶实对称矩阵,且满足A^2+2A=0,若kA+E是正定矩阵,则k的取值范围

由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<

设n阶方阵A满足Am=0,其中m是个正整数,求出En+A和En-A的逆矩阵

同楼上,认为Am表示A^m,也就是A的m次方,En表示n阶单位阵A^m=0则En-A^m=En,En+A^m=En因为En^m=En下面就是a^m-b^m和a^m+b^m的展开式了比如En-A^m=E