设n阶方阵A满足A^2=4E,证明R(2E-A) R(2E| A)=n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:21:33
设n阶方阵A满足A^2=4E,证明R(2E-A) R(2E| A)=n
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1

(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^

设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵

因为A^2-4A+3E=0所以A(A-2E)-2(A-2E)-E=0所以(A-2E)(A-2E)=E所以A-2E可逆所以2E-A可逆所以B=(2E-A)^T(2E-A)是正定矩阵--正定合同于单位矩阵

线性代数 方阵设n阶方阵A满足:A*A-A-2E=0,则必有?1 A=2E2 A=-E3 A-E可逆4 A不可逆

答案选3,因为原式变换得:(A-E)*A=2E;根据可逆阵定义知:0.5*(A-E)和A互为可逆矩阵.

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

线代证明题求解设A是n阶方阵,且满足R(E+A)+R(E-A)=n,试证:A满足A^2=E.

Only_唯漪的证法我好像没有看懂的样子……果然代数都忘光了,这里给出一种Jordan标准型的证法参考一下:——————————————————————————————————————————∵R(E

线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E

A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O

线性代数:设n阶方阵A满足A^2-4A-6E=0,试证A及A+E均可逆,并分别求它们的逆

A^2-4A-6E=0,所以A^2-4A=6E,所以A(A-4E)=6E,所以A(A-4E)/6=E,同理[(A-4E)/6]A=E,所以A可逆,A的逆为(A-4E)/6.A^2-4A-6E=0,所以

设n阶方阵A满足:A^2+2A-3E=0,证明:R(A+3E)+R(A-E)=n

证:R(A+3E)+R(A-E)=R(A+3E)+R(E-A)≥R(A+3E+E-A)=R(4E)=n①A²+2A-3E=0(A+3E)(A-E)=0R(A+3E)+R(A-E)≤n②由①、

已知N阶方阵A满足A^2=4A,证明A-5E可逆?

A^2=4AA(A-4I)=0A=0orA-4I=0ifA=0A-4I=-4I(A-4I)^(-1)=(-1/4)IifA-4I=0A-5I=-Ithen(A-5I)^(-1)=-IieA-5I可逆

设n阶方阵A满足A^2-A-2E=0怎么证明A-E可逆?

因为A^2-A-2E=0所以A(A-E)=2E所以A-E可逆,且(A-E)^-1=(1/2)A.

设A为n阶方阵且满足条件A^2+A-6E=0,则(A+4E)的-1次方=

(A+4E)(A-3E)=A^2+A-12E=-6E=>(A+4E)^(-1)=-(A-3E)/6

设n阶方阵A满足A^2=E,证明r(A-E)=n-r(A+E)

证:由已知,A^2=E,(A+E)(A-E)=0所以r(A+E)+r(A-E)

设n阶方阵A满足A^2+2A-3E=0证明A+4E的特征值都不是零.

因为A^2+2A-3E=0所以如果m_A(x)是矩阵A的最小多项式,定有m_A(x)|(x^2+2x-3)所以A得特征值只可能是x^2+2x-3的根1或者-3.所以|A+4E|≠0即A+4E的特征值都

设n阶方阵A,B满足A*BA=4BA-2E且|A|=2,|E-2A|≠0,求矩阵B

等式A*BA=4BA-2E两边左乘A,右乘A^-1,得|A|B=4AB-2E.代入|A|=2得B=2AB-E所以(2A-E)B=E因为|E-2A|≠0所以2A-E可逆故B=(2A-E)^-1.

设4阶方阵满足|3E+A|=0 ,AAT=2E,|A|

由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|

设N阶方阵满足A^2-2A-E=0,证明A+E可逆,并求其逆

式子化成(A+E)(A-3E)=-2E由逆矩阵定义得满足AB=E则A,B互为逆矩阵所以A+E可逆逆矩阵为(A-3E)/(-2)

证明题 设N阶方阵A满足A²-2A-4E=0 证明A-3E 可逆

A²-2A-4E=0A²-2A-3E=E(A-3E)(A+E)=E所以A-3E的逆矩阵为A+E,A-3E可逆再问:能更详细点么过程需要考试要用到谢谢了再答:如果矩阵AB=E,那么矩

设n 阶方阵A 满足A(2次方)-A+2E=0 ,证明:A-E 可逆,并求(A-E)-1次方

A^2-A+2E=A(A-E)+2E=0;所以A(A-E)=-2E|A||A-E|=-2|A-E|不为零即A-E可逆,又A(A-E)=-2E所以(A-E)(-1/2A)=E所以(A-E)^(-1)=-

设n阶方阵A满足A^2+A+2E=0,则(A+E)^-1=?

由A^2+A+2E=0,可以写成(-A/2)(A+E)=E,所以(A+E)^-1=-A/2.

设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立