设n个实数x1,x2,...,xn的算术平均数是x,a是不等于x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:15:44
设n个实数x1,x2,...,xn的算术平均数是x,a是不等于x
1.设X1,X2,……Xn都是实数,且n(X1平方+X2平方+……+Xn平方)=(X1+X2+……Xn)平方,求证X1=

x1^2+x2^2>=2x1x2x1^2+x3^2>=2x1x3...x1^2+xn^2>=2x1xnx2^2+x3^2>=2x2x3...x(n-1)^2+xn^2>=2x(n-1)xn相加得(n-

设{xn}为有界正实数列,求lim xn/(x1+x2+…xn) (n趋近于无穷)

limxn/(x1+x2+…xn)=0因为xn是一个有限的正实数,而(x1+x2+…xn)趋近于无穷,所以xn/(x1+x2+…xn)趋近于0.再问:不一定趋于无穷哦,比如1/2^n再答:是我没有考虑

设x1,x2是一元二次方程x2+3x-3=0的两个实数根,求x1/x2+x2/x1的值

x1,x2是一元二次方程x2+3x-3=0的两个实数根∴x1+x2=-3x1x2=-3∴x1/x2+x2/x1=(x1²+x2²)/x1x2=[(x1+x2)²-2x1x

设x1,x2是方程ax平方+bx+c=0的2个实数根,求x1,x2

求根公式 再问:能给我说一下x1,x2等于多少吗再答:就是上面的式子,因为你题目刚好对应了这几个字母x1和x2就是上面的±号,变成+和-就是了

设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...

两边同乘[(1+x1)+(1+x2)+.(1+xn)]即(n+1)即证:[(1+x1)+(1+x2)+.(1+xn)]*[x1^2/1+x1+x2^2/1+x2+...+xn^2/1+xn]=>1显然

设函数F(X)的定义域为R,对任意实数X1,X2,有F(X1)+F(X2)=2F(X1+X2/2)乘以F(X1-X2)/

1.求F(0)的值F(x1)+F(x2)=2F((x1+x2)/2)F((x1-x2)/2),x1=x2=x2F(x)=2F(x)F(0)F(0)=1F(x)+F(-x)=2F((x-x)/2)F((

已知正实数xi:x1*x2*x3*x4*...*xn=1.求证:[1/(n-1+x1)]+[1/(n-1+x2)]+..

∵1/(n-1+xi)-1/n=(1-xi)/[n(n-1+xi)]∴[1/(n-1+x1)]-1/n+[1/(n-1+x2)]-1/n+...+[1/(n-1+xn)-1/n]=(1-x1)/[n(

设X1,X2,X2是方程X3+PX+q=0的3个根,计算行列式 X1 X2 X3 X3 X1 X2 X2 X3 X1

行列式展开=x1^3+x2^3+x3^3-3x1x2x3而x1^3+x2^3+x3^3-3x1x2x3=(x1+x2+x3)(x1^2+x2^2+x3^2-x1x2-x2x3-x3x1)(展开右边即得

答多少算多少.1.设X1,X2,X3,X4是非负实数,使得x1+x2+x3+x4+x5=100,M是x1+x2,x2+x

1假设X1+X2=M为最大值,则X2+X3,X3+X4和X4+X5均小于或等于M所以x1+x2+x3+x4+x5

设k、n是自然数,1≤k≤n;x1,x2,…,xk是k个正实数,且它们的和等于它们的积.求证:

因x1*x2*...*xk=x1+x2+...+xk≥k(x1*x2*.*xk)^(1/k)则(x1*x2*...*xk)^(k-1)/k≥kx1^(n-1)+x2^(n-1)+…+xk^(n-1)≥

设x1,x2,...,xn为任意实数,求证:x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1

和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2

设函数f(x)的定义域为R,对任意实数x1,x2,有f(x1)+f(x2)=2f{(x1+x2)/2}×f{(x1-x2

/>1.∵f(X1)+f(X2)=2f{(X1+X2)/2}f{(X1-X2)/2},令X2=X1,得2f(X1)=2f(X1)f(0),即有f(X1)[1-f(0)]=0又∵对任意实数x1上式都成立

设x1,x2是一元二次方程x^2-3x-2=0的二个实数根,则x1+x1x2+x2的值为_____.

x²-3x-2=0x₁+x₂=-b/a=3;x₁x₂=c/a=-2;∴x₁+x₁x₂+x₂=3

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

设x1,x2(x1

根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√