设n 阶方阵A 不可逆,则必有

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:46:12
设n 阶方阵A 不可逆,则必有
设A是n阶方阵,且A2=A,证明A+E可逆

由A^2=A知道A的特征值只能是1和0若|A+E|=0,则-1是其特征值,这不可能所以|A+E|≠0,即可逆

设A是n阶方阵,且(A+E)的平方=O,证明A可逆

(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.

设A是n阶方阵,且(A+E)^2=0,证明A可逆.

由(A+E)^2=0得A^2+2A+E=0A(-A-2E)=E所以A可逆且逆矩阵为-A-2E

线性代数 方阵设n阶方阵A满足:A*A-A-2E=0,则必有?1 A=2E2 A=-E3 A-E可逆4 A不可逆

答案选3,因为原式变换得:(A-E)*A=2E;根据可逆阵定义知:0.5*(A-E)和A互为可逆矩阵.

设A 为n 阶方阵,A不等于0 ,若A2次方-3A=0 .证明A-3E 不可逆.

由题:A^2-3A=0(这里的0,表示n阶0矩阵,以下同)得到:A(A-3E)=0由于A≠0,因此A-3E=0,0矩阵不可逆,从而A-3E不可逆!

关于线性代数:设n阶方阵 ,且满足 ,证明3E-A不可逆

只需证明|3E-A|=0,由已知...(A满足的条件),则3是A的一个特征值,故|3E-A|=0,从而3E-A不可逆.

设n阶方阵A满足A^2-A-2i=0 证明则必有A-i可逆

A^2-A-2i=A^2-A*I-2I=(A-I)*(A)-2I=0所以(A-I)*(A/2)=I所以A-I的逆为A/2

线性代数 :若n阶方阵A为不可逆矩阵,则必有R(A)

A为不可逆矩阵那么Ax=0有非零解也就是存在不全为0的数使得k1a1+k2a2+..knan=0(其中ai是A的列向量)所以a1...an线性先关所以r(A)

设A,B为N阶方阵,若A可逆,证明AB与BA相似

因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.

设A,B是n阶方阵 P,Q是n阶可逆矩阵

给你例子看看A=[1,0;0,0],B=[0,0;0,1]则因为r(A)=r(B)=1,所以A与B等价.但它们的行向量组,列向量组都不等价A的行向量组是(1,0),(0,0)B的行向量组是(0,0),

设A是n阶方阵,满足A*A-A-2i=0,证明A-2i与A+i不同时可逆

A*A-A-2i=0也就是(A-2I)(A+I)=0取行列式得|A-2I||A+I|=0也就是|A-2I|、|A+I|中必有一个为0那就不可逆了

设A是n阶方阵,且A的平方等于A,证明A+E可逆

假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾

设n阶方阵A,B的乘积AB为可逆矩阵,证明A,B都是可逆矩阵

AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

设n阶方阵A及s阶方阵B都可逆,求

将逆矩阵设出来直接求解请见下图

设A.B均为n阶方阵,则下列结论正确的是 A.若A或B可逆,则必有AB可逆 B.若A或B不可逆,则必有AB可逆

A.若A或B可逆,则必有AB可逆这个不对,A,B都可逆时,AB才可逆B.若A或B不可逆,则必有AB可逆不对,原因同上C.若A,B均可逆,则必有A+B可逆不对,E和-E都可逆,和是0矩阵不可逆D.若A.

设AB均为n阶方阵,若AB=0,且B不等于零,则必有A为不可逆矩阵,为什么啊

又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆