设F{u,v}有连续的偏导数,方程F(cx-az,cy-bz)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 15:51:39
设F{u,v}有连续的偏导数,方程F(cx-az,cy-bz)
设函数z=f(u,v)具有二阶连续偏导数,z=f(x-y,y/x),求a^2z/axay

令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a

设Φ(u,v)具有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(эz/эx)

cx-az看成u,cy-bz看成v,对Φ(u,v)=0分别对x,y求偏导,自然得到结果,你要是不会对隐函数求导或者不会对函数求偏导,就要去看书补充基础知识,只满足于得到具体某一题的答案对你没有好处抽象

设z = f(u,v),而u=x+y,v=xy,其中f具有一阶连续偏导数,则∂z/∂x

∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/&#

设函数z=z(x,y)是由方程F(x-z,y-z)所确定的隐函数,其中F(u,v)具有一阶连续偏导数,求z(下标x)+z

z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x

设f具有一阶连续偏导数,求u = f(xy,x+y)的偏导数∂u/∂x,∂u/

这是比较简单的求导了,你看一下书,在高数的下册把,多元函数求导中,我给你插图可能看不清,我也不知道怎么弄.下面那个人的解法不对,要是看不清我的插图就看看书就行了.

设函数u=f(x,y,z)具有连续偏导数

∂w/∂x=f‘1+yz·f’2(f‘1表示对f的第一个变量求偏导,1在下标其余类似)f具有二阶连续偏导数,∂²w/∂x∂z=&#

设f(u,v)具有二阶连续偏导数,z=f(e^xsiny,x^2+y^2). 计算δ^2z/δx^2 (δ为偏导数符号)

令e^xsiny=u,x^2+y^2=v则δz/δx=δf/δu*δu/δx+δf/δv*δv/δx=δf/δu*(e^xsiny)+δf/δv*(2x)δ^2z/δx^2=δ^2f/δu^2*(e^

设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则∂

∵z=f(x,xy),令u=x,v=xy∴∂z∂x=f′1+yf′2∴∂2z∂x∂y=∂∂y(f′1+yf′2)=∂f′1∂y+∂∂y(yf′2)═(∂f′1∂u∂u∂y+∂f′1∂v∂v∂y)+f′

方程f(y/z,z/x)=0确定z是x,y的函数,f有连续的偏导数,且f'v(u,v)≠0.

用微分.再问:能不能用复合函数求导解下再答:用的就是复合函数求导方法。函数t=f(y/z,z/x)是由t=f(v,u)和v=y/z、u=z/x三个函数复合而成的。解答过程省略了:df(v,u)=0;f

设Φ(u,v)有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(∂

用公式法∂z/∂x=-Fx/Fz计算的话得:Fx=cΦ1Fy=cΦ2Fz=Φ1(-a)+Φ2(-b)你:Fx和Fy求错了.

设函数F(u,v ,w) 的偏导数连续,由F(x-y,y-z,z-x)=0确定隐函数z=z(x,y),求此隐函数的全微分

F(x-y,y-z,z-x)=0对x求偏导数(y是常量):F1+F2(-az/ax)+F3(az/ax-1)=0F(x-y,y-z,z-x)=0对y求偏导数(x是常量):F1(-1)+F2(1-az/

偏导数证明题设t(u,v)具有连续偏导数.证明:由方程t(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a

设u=cx-az,v=cy-bz.方程t(cx-az,cy-bz)=0两边对x求偏导数,得ðf/ðu*(c-aðz/ðx)-bðf/ðv*&

设u=f(x,x/y),其中f具有二阶连续偏导数,求u对x的二阶连续偏导数,

再问:请问那个f12的二阶导数是怎么来的啊再答:前面两个都来自f1'对x的偏导数再问:哦再问:再问您一下,还是这道题,先对x再对y求二阶连续偏导怎么做啊再问:u先对x再对y再答:再问:多谢再问:请问最

多元隐函数求导设函数x=x(u,v),y=y(u,v)在点(u,v)的某一邻域内连续且有连续偏导数,又e(x,y)/e(

很早见过有人发过这题当时没学现在学了还没学清楚貌似是流行上的微积分的内容