设fx=ax平方 bx 1(a不等于0,b属于r)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:12:27
设fx=ax平方 bx 1(a不等于0,b属于r)
设函数FX=X平方-ax+2 a为常数 X∈[-1,1]时最小值为-1 求A

因为函数对称轴为x=a/2,所以,当a/2<-1时,当x=-1有最小值-1,得1+a+2=-1所以,a=-4,当-1≤a/2≤1时,x=a/2,函数有最小值-1,a²/4-a²/2

设函数fx=ax+cosx,x[o,π],设函数fx小于等于1+sinx,求a的取值范围

AX+COSX小于等于1+SINXCOSX-SINX小于等于1-AX根号2*COS(X+PAI/4)小于等于1-AX由Y=根号2*COS(X+PAI/4)和Y=1-AX的图像可直接判定,A小于等于0画

设函数f(x)=x^3+ax^2-a^2x+1,g(x)=ax^2-2x+1,其中实数a不等0

只有一个公共点则x^3+ax^2-a^2x+1=ax^2-2x+1只有一个解x^3+(2-a^2)x=0x(x²+2-a²)=0x=0是解所以x²+2-a²=0

设函数Fx=ax^2+bx+1.(a.b∈R)

Fx=ax^2+bx+1F(-1)=a-b+1=0对于任意函数均有Fx≥0b^2-4a≤0a>0解得(a-1)^2≤0a=1b=2Fx=x^2+2x+1Gx=xFx-kx=x^3+2x^2+(1-k)

设函数f(x)=x的平方+ax-inx若a=1,试求出函数fx的单调区间

f(x)=x^2+x-lnxx>0f'(x)=2x+1-1/x=(2x^2+x-1)/x递增区间:(1/2,+∞)递减区间:(0,1/2)

设函数fx=lnx - ax + (1-a)/x - 1

设函数f(x)=lnx-ax+frac{1-a}{x}-1.(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;(Ⅱ)当a=frac{1}{3}时,求函数f(x)的单调区间-高中数学-菁优网http

函数fx=ax的平方+bx+1[a>0】

1.代入-1得a-b+1=0又因为fx大于等于0,因为在去-1时交与0,所以b方-4a=0,两方程可求解.a=1,b=2.fx=x方+2x+12.代入fx得gx=x2+(2-k)x+1因为在-1与1之

已知函数fx=2ax立方-3x平方,a>0

f(x)=2ax³-3x²求导f'(x)=6ax²-6x=6x(ax-1)a>0f'(x)>0得x1/a所以fx在区间(-无穷,0)是增函数.

一道导数数学题.设函数fx=ax-2-lnx

原式即证:e^x>lnx+2∵e^x>x+1(用导数证)x-1>lnx(用导数证)∴e^x>x+1=x-1+2>lnx+2结论得证(上面的大于号都带等但不同是取等)

已知函数fx=ax平方+bx+c(a≠0)是(-∞,0)

f(x)=x^2+1再问:可以解释一下为什么吗再答:这个函数的对称轴是x=0,而且开口方向向上,所以在(负无穷大,0)是单调递减,在x=0处取得最小值,最小值是1,满足大于0,所以这个函数满足条件

设函数[fx]=x平方e的x-1次方+ax的3次方+bx的平方,已知X=-2和X=1为f[x]的极点.1,求a b 2求

1】由题意求导f‘(x)=2xe^(x-1)+x^2*e^(x-1)+3ax^2+2bxf'(-2)=f'(1)=0代入得a=-1/3b=-12】f(x)=x^2*e^x-x^3/3-x^2设F(x)

设两个二次方程ax平方+bx+c=0及cx平方+bx+a=0都有两个不等的整数根,求c分之a及c分之b的值

ax²+bx+c=0,得x=[-b±√(b²-4ac)]/(2a)=-b/(2a)±√{[b/(2a)]²-c/a}cx²+bx+a=0,得x=[-b±√(b&

急!已知函数f(x)=3分之1x的立方-2分之1(a+1)x的平方+ax 问,当a=-1时,求fx的单调区间,二问,设a

f(x)=1/3x^3-1/2(a+1)x^2+axf'(x)=x^2-(a+1)x+a=(x-a)(x-1)1】当a=-1时f'(x)=(x-1)(x+1)令f‘(x)≥0,得x≥1或x≤-1所以,

设函数fx=e的x次方—1—x—ax的平方 若a=0,求fx的极值

a=0,f(x)=e^x-1-xf'(x)=e^x-1=0e^x=1x=0x>0时f'(x)>0,x

设函数fx=x^3+ax^2-a^2x+m其中实数a>0.

这是求什么啊,怎么连个问题也没有

设函数fx=x^3+ax^2-a^2x+m若a=1时函数fx有三个不同的零点

(1)对f(x)求导得:f(x)'=3x^2+2ax-a^2解得两个极值点分别为:x1=-a,x2=a/3当a=0时:x1=x2=0,故此时f(x)在R上都不存在极值点,满足条件.当a≠0时:考虑到x

设函数fx=ax^2+x-a,a属于R,1)

(1)(-4a^2-1)/(4a)=17/8-32a^2-8=68a8a^2+17a+2=0(a+2)(8a+1)=0a=-2ora=-1/8(2)ax^2+x-a>1ax^2+x-a-1>0(x-1

设函数fx=ax立方-(a+b)x方+bx+c

1)f'(x)=3ax^2-2(a+b)x+bf'(1/3)=3a/9-2(a+b)/3+b=(-a+b)/3=0,因此有a=b故f'(x)=3ax^2-4ax+a=a(3x^2-4x+1)=a(3x